Enhancing short-term wind power forecasting accuracy for reliable and safe integration into power systems: A gray relational analysis and optimized support vector regression machine approach
{"title":"Enhancing short-term wind power forecasting accuracy for reliable and safe integration into power systems: A gray relational analysis and optimized support vector regression machine approach","authors":"Yuwei Liu, Lingling Li, Jiaqi Liu","doi":"10.1063/5.0181395","DOIUrl":null,"url":null,"abstract":"The reliability and safety of power systems heavily depend on accurate forecasting of new energy generation. However, the non-stationarity and randomness of new energy generation power increase forecasting difficulty. This paper aims to propose a short-term wind power forecasting method with strong characterization ability to accurately understand future new energy generation conditions so as to ensure power systems' reliability and safety. The required input variables for wind power forecasting are determined by the gray relational analysis method. An advanced marine predators algorithm is proposed by improving the marine predators algorithm to enhance convergence ability and probability of escaping local optimal solutions. The advanced marine predators algorithm optimizes support vector regression machine to address the issue of insufficient utilization of its forecasting performance due to the selection of parameter values based on personal experience in traditional methods. Finally, different wind power generation scenarios verify its effectiveness and universality. This study promotes the application of artificial intelligence technology for improving short-term wind power forecasting accuracy, thereby enhancing the reliability and safety level of power systems.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0181395","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The reliability and safety of power systems heavily depend on accurate forecasting of new energy generation. However, the non-stationarity and randomness of new energy generation power increase forecasting difficulty. This paper aims to propose a short-term wind power forecasting method with strong characterization ability to accurately understand future new energy generation conditions so as to ensure power systems' reliability and safety. The required input variables for wind power forecasting are determined by the gray relational analysis method. An advanced marine predators algorithm is proposed by improving the marine predators algorithm to enhance convergence ability and probability of escaping local optimal solutions. The advanced marine predators algorithm optimizes support vector regression machine to address the issue of insufficient utilization of its forecasting performance due to the selection of parameter values based on personal experience in traditional methods. Finally, different wind power generation scenarios verify its effectiveness and universality. This study promotes the application of artificial intelligence technology for improving short-term wind power forecasting accuracy, thereby enhancing the reliability and safety level of power systems.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy