{"title":"Improving multi-state appliance classification by SE-DenseNet based on color encoding in non-intrusive load monitoring","authors":"Yinghua Han, Zhiwei Dou, Yu Zhao, Qiang Zhao","doi":"10.1063/5.0180804","DOIUrl":null,"url":null,"abstract":"Non-intrusive load monitoring (NILM) is a technique that efficiently monitors appliances' operational status and energy consumption by utilizing voltage and current data, without intrusive measurements. In NILM, designing efficient classification models and building distinctive load features are crucial. However, due to its continuously variable load characteristics, multi-state load identification remains the most challenging problem in NILM. In this paper, we improve the encoding of the color V–I trajectory by incorporating instantaneous power, thereby enhancing the uniqueness of V–I trajectory features. Furthermore, we investigate a NILM method based on deep learning methods and propose a densely connected convolutional network with squeeze-and-excitation network (SE-DenseNet) architecture to solve the multi-state load identification problem. Initially, the architecture leverages DenseNet's dense connectivity property to generate a multitude of feature maps from the V–I trajectory. Then, SENet's channel attention mechanism is employed to enhance the utilization of effective features, which is more effective for multi-state load identification. Experimental results on the NILM public datasets PLAID and WHITED show that the recognition accuracy of the proposed method reaches 98.60% and 98.88%, respectively, which outperforms most existing methods.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0180804","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Non-intrusive load monitoring (NILM) is a technique that efficiently monitors appliances' operational status and energy consumption by utilizing voltage and current data, without intrusive measurements. In NILM, designing efficient classification models and building distinctive load features are crucial. However, due to its continuously variable load characteristics, multi-state load identification remains the most challenging problem in NILM. In this paper, we improve the encoding of the color V–I trajectory by incorporating instantaneous power, thereby enhancing the uniqueness of V–I trajectory features. Furthermore, we investigate a NILM method based on deep learning methods and propose a densely connected convolutional network with squeeze-and-excitation network (SE-DenseNet) architecture to solve the multi-state load identification problem. Initially, the architecture leverages DenseNet's dense connectivity property to generate a multitude of feature maps from the V–I trajectory. Then, SENet's channel attention mechanism is employed to enhance the utilization of effective features, which is more effective for multi-state load identification. Experimental results on the NILM public datasets PLAID and WHITED show that the recognition accuracy of the proposed method reaches 98.60% and 98.88%, respectively, which outperforms most existing methods.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy