{"title":"Crime-Avoiding Routing Navigation","authors":"N. Rishe, Masoud Sadjadi, Malek Adjouadi","doi":"10.58245/ipsi.tir.2401.06","DOIUrl":null,"url":null,"abstract":"Extensive prior work has provided methods for the optimization of routing based on the criteria of travel time and/or the cost of travel and/or the distance traveled. A typical method of routing involves building a graph comprised of street segments, assigning a normalized weighted value to each segment, and then applying the weighted-shorted path algorithm to the graph to find the best route. Some users desire that the routing suggestion include consideration pertaining to the reduction of risk of encountering violent crime. For example, a user desires a leisurely walk via a safe route from her hotel in an unknown city. Here, we present a method to quantify such user preferences and the risks of encountering crime and to augment the standard routing methods by assigning weights to safety considerations. The proposed method’s advantages, in comparison to other crimeavoidance routing algorithms, include weighting crime types with respect to their potential detrimental value to the user, with temporal qualification and quantification of crime and its statistical aggregation at the geographic resolution down to a city block.","PeriodicalId":516644,"journal":{"name":"IPSI Transactions on Internet Research","volume":"23 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSI Transactions on Internet Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58245/ipsi.tir.2401.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Extensive prior work has provided methods for the optimization of routing based on the criteria of travel time and/or the cost of travel and/or the distance traveled. A typical method of routing involves building a graph comprised of street segments, assigning a normalized weighted value to each segment, and then applying the weighted-shorted path algorithm to the graph to find the best route. Some users desire that the routing suggestion include consideration pertaining to the reduction of risk of encountering violent crime. For example, a user desires a leisurely walk via a safe route from her hotel in an unknown city. Here, we present a method to quantify such user preferences and the risks of encountering crime and to augment the standard routing methods by assigning weights to safety considerations. The proposed method’s advantages, in comparison to other crimeavoidance routing algorithms, include weighting crime types with respect to their potential detrimental value to the user, with temporal qualification and quantification of crime and its statistical aggregation at the geographic resolution down to a city block.