{"title":"Securing Operating Systems (OS): A Comprehensive Approach to Security with Best Practices and Techniques","authors":"Zarif Bin Akhtar","doi":"10.2478/ijanmc-2024-0010","DOIUrl":null,"url":null,"abstract":"\n Operating system (OS) security is paramount in ensuring the integrity, confidentiality, and availability of computer systems and data. This research manuscript presents a comprehensive investigation into the multifaceted domain of OS security, aiming to enhance understanding, identify challenges, and propose effective solutions. The research methodology integrates diverse approaches, including an extensive exploration for available knowledge process mechanics, empirical data collection, case studies investigations, experimental analysis, comparative studies, qualitative analysis, synthesis, and interpretation. Through various experimental perspectives, theoretical foundations, historical developments, and current trends in OS security are also explored. Empirical data collection involves gathering insights from publicly available reports, security advisories, case studies, and expert interviews to capture real-world perspectives and experiences. Case studies illustrate practical implications of security strategies, while experimental analysis evaluates the efficacy of security measures in controlled environments. Comparative studies and qualitative analysis provide insights into strengths, limitations, and emerging trends in OS security. The synthesis and interpretation of the findings offer actionable insights for improving OS security practices, policy recommendations, and providing towards future research directions. This research contributes to advancing knowledge in OS security and informs the development of effective strategies to safeguard computer systems against evolving threats and vulnerabilities.","PeriodicalId":193299,"journal":{"name":"International Journal of Advanced Network, Monitoring and Controls","volume":"43 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Network, Monitoring and Controls","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijanmc-2024-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Operating system (OS) security is paramount in ensuring the integrity, confidentiality, and availability of computer systems and data. This research manuscript presents a comprehensive investigation into the multifaceted domain of OS security, aiming to enhance understanding, identify challenges, and propose effective solutions. The research methodology integrates diverse approaches, including an extensive exploration for available knowledge process mechanics, empirical data collection, case studies investigations, experimental analysis, comparative studies, qualitative analysis, synthesis, and interpretation. Through various experimental perspectives, theoretical foundations, historical developments, and current trends in OS security are also explored. Empirical data collection involves gathering insights from publicly available reports, security advisories, case studies, and expert interviews to capture real-world perspectives and experiences. Case studies illustrate practical implications of security strategies, while experimental analysis evaluates the efficacy of security measures in controlled environments. Comparative studies and qualitative analysis provide insights into strengths, limitations, and emerging trends in OS security. The synthesis and interpretation of the findings offer actionable insights for improving OS security practices, policy recommendations, and providing towards future research directions. This research contributes to advancing knowledge in OS security and informs the development of effective strategies to safeguard computer systems against evolving threats and vulnerabilities.