{"title":"3D printing applications on textiles: Measurement of air permeability for potential use in stab-proof vests","authors":"D. Sitotaw, Dominik Muenks, Abera Kechi Kebash","doi":"10.1177/15589250241232152","DOIUrl":null,"url":null,"abstract":"The most important piece of safety equipment is developed as a reinforced piece of body armor to resist attacks to the upper parts of the body so as to save the lives of its wearers to offer protection against stabbing with sharp-tipped objects. The majority of commercial stab resistant armors are not comfortable for users to wear during their whole duty shift. The three-dimensional (3D) printing has given great opportunity to develop equipment for a particular and individual application with the incorporation of performance and comfort. Stab protective armor has been developed by 3D printing without compromising the protection performance for a particular energy level to improve the comfort of the armor vest so that users are willing to wear during their whole duty shift. In this study, air permeability is used to measure the comfort tendency of the protective armor as a safety gear without reducing the protection performance. In this study the effect of textile materials and structures, shapes of 3D prints as the segmentation of scales, size of scales, parts of the full vest, attachments, and air exposure sides of the panel are investigated. The result revealed that the air permeability of the 3D printed protective armor vest improved the comfort as compared to the commercially available armor vests of both from a single plate and large sized segmented scales.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineered Fibers and Fabrics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15589250241232152","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
The most important piece of safety equipment is developed as a reinforced piece of body armor to resist attacks to the upper parts of the body so as to save the lives of its wearers to offer protection against stabbing with sharp-tipped objects. The majority of commercial stab resistant armors are not comfortable for users to wear during their whole duty shift. The three-dimensional (3D) printing has given great opportunity to develop equipment for a particular and individual application with the incorporation of performance and comfort. Stab protective armor has been developed by 3D printing without compromising the protection performance for a particular energy level to improve the comfort of the armor vest so that users are willing to wear during their whole duty shift. In this study, air permeability is used to measure the comfort tendency of the protective armor as a safety gear without reducing the protection performance. In this study the effect of textile materials and structures, shapes of 3D prints as the segmentation of scales, size of scales, parts of the full vest, attachments, and air exposure sides of the panel are investigated. The result revealed that the air permeability of the 3D printed protective armor vest improved the comfort as compared to the commercially available armor vests of both from a single plate and large sized segmented scales.
期刊介绍:
Journal of Engineered Fibers and Fabrics is a peer-reviewed, open access journal which aims to facilitate the rapid and wide dissemination of research in the engineering of textiles, clothing and fiber based structures.