Infectious diseases prevention and control with reduced energy consumption in an airport

Q1 Engineering
Tingrui Hu, Shujia Shang, Jingchao Xie, Ying Ji, Peng Xue, Nan Zhang
{"title":"Infectious diseases prevention and control with reduced energy consumption in an airport","authors":"Tingrui Hu,&nbsp;Shujia Shang,&nbsp;Jingchao Xie,&nbsp;Ying Ji,&nbsp;Peng Xue,&nbsp;Nan Zhang","doi":"10.1016/j.enbenv.2024.01.012","DOIUrl":null,"url":null,"abstract":"<div><div>The COVID-19 pandemic threatened the world. As an important transportation hub connecting countries and regions, airports have played a critical role in COVID-19 prevention and control. This study developed an infection risk-human comfort-energy consumption model to calculate the COVID-19 transmission and energy consumption for epidemic prevention and control in seven different functional areas of an airport during different seasons (winter, summer, and transition season) and actual passenger movement. When considering dynamic passenger flow, the energy consumption needed to prevent and control transmission of the epidemic in each area of the airport could be reduced by 71–85 %. The waiting, dining, and shopping areas were the areas with the highest energy consumption, accounting for 25–47 %, 15–32 %, and 11–38 % of the total energy consumption of epidemic prevention at the airport, respectively. The dining area had the highest energy consumption per square meter, reaching 14.2 kWh/m<sup>2</sup> at its highest. After closing the dining area, energy consumption was reduced by 14–20 %. Compared with strict epidemic prevention and control, energy consumption in the airport was reduced by 70–85 % considering both optimized intervention and dynamic passenger flow. The results of this study provide a scientific basis for energy-saving and emission reduction in airports under an epidemic situation.</div></div>","PeriodicalId":33659,"journal":{"name":"Energy and Built Environment","volume":"6 3","pages":"Pages 524-533"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666123324000187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 pandemic threatened the world. As an important transportation hub connecting countries and regions, airports have played a critical role in COVID-19 prevention and control. This study developed an infection risk-human comfort-energy consumption model to calculate the COVID-19 transmission and energy consumption for epidemic prevention and control in seven different functional areas of an airport during different seasons (winter, summer, and transition season) and actual passenger movement. When considering dynamic passenger flow, the energy consumption needed to prevent and control transmission of the epidemic in each area of the airport could be reduced by 71–85 %. The waiting, dining, and shopping areas were the areas with the highest energy consumption, accounting for 25–47 %, 15–32 %, and 11–38 % of the total energy consumption of epidemic prevention at the airport, respectively. The dining area had the highest energy consumption per square meter, reaching 14.2 kWh/m2 at its highest. After closing the dining area, energy consumption was reduced by 14–20 %. Compared with strict epidemic prevention and control, energy consumption in the airport was reduced by 70–85 % considering both optimized intervention and dynamic passenger flow. The results of this study provide a scientific basis for energy-saving and emission reduction in airports under an epidemic situation.

Abstract Image

降低机场能耗,预防和控制传染病
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and Built Environment
Energy and Built Environment Engineering-Building and Construction
CiteScore
15.90
自引率
0.00%
发文量
104
审稿时长
49 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信