{"title":"Development of ‘smart’ metal-matrix or metal-dopant antibacterial surface coatings by dry deposition techniques","authors":"Laurène Youssef, Audrey Prorot, Alain Denoirjean, Laurène Gnodé, Thibault Maerten, Canet Acikgoz","doi":"10.25965/lji.751","DOIUrl":null,"url":null,"abstract":"The emergence of the SARS-CoV-2 virus in late 2019 shook the scientific community. Research teams from different fields then quickly mobilized to seek adequate and efficient long-term solutions. However, pathogens are not only limited to viruses: bacteria are microorganisms found in all environments and also likely to cause human diseases. One of the possible transmission routes is through contact with surfaces touched by infected people. In this work, coatings with an antibacterial matrix of Cu are developed by plasma spraying at IRCER, Limoges and doped with a photo-catalyst, TiO2, in order to evaluate the synergy of the two effects on the bactericidal character of Cu. In parallel, TiN coatings with antibacterial dopants (Ag and Cu) elaborated by PVD, are supplied by Oerlikon Balzers, Liechtenstein. All antibacterial tests are carried out at E2Lim, Limoges with the aim of comparing on the one hand the effect of the quantity of a bactericidal element and on the other hand the surface condition of the coating on its ability to destroy pathogens. Results of studies by flow cytometry of the bacteria’s enzymatic activity are presented in this work.","PeriodicalId":517685,"journal":{"name":"Les journées de l'interdisciplinarité 2023","volume":"37 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Les journées de l'interdisciplinarité 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25965/lji.751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of the SARS-CoV-2 virus in late 2019 shook the scientific community. Research teams from different fields then quickly mobilized to seek adequate and efficient long-term solutions. However, pathogens are not only limited to viruses: bacteria are microorganisms found in all environments and also likely to cause human diseases. One of the possible transmission routes is through contact with surfaces touched by infected people. In this work, coatings with an antibacterial matrix of Cu are developed by plasma spraying at IRCER, Limoges and doped with a photo-catalyst, TiO2, in order to evaluate the synergy of the two effects on the bactericidal character of Cu. In parallel, TiN coatings with antibacterial dopants (Ag and Cu) elaborated by PVD, are supplied by Oerlikon Balzers, Liechtenstein. All antibacterial tests are carried out at E2Lim, Limoges with the aim of comparing on the one hand the effect of the quantity of a bactericidal element and on the other hand the surface condition of the coating on its ability to destroy pathogens. Results of studies by flow cytometry of the bacteria’s enzymatic activity are presented in this work.