Completions of the affine 3-space into del Pezzo fibrations

Q2 Mathematics
Adrien Dubouloz, Takashi Kishimoto, Masaru Nagaoka
{"title":"Completions of the affine 3-space into del Pezzo fibrations","authors":"Adrien Dubouloz,&nbsp;Takashi Kishimoto,&nbsp;Masaru Nagaoka","doi":"10.1007/s11565-024-00499-4","DOIUrl":null,"url":null,"abstract":"<div><p>We give constructions of completions of the affine 3-space into total spaces of del Pezzo fibrations of every degree other than 7 over the projective line. We show in particular that every del Pezzo surface other than <span>\\({\\mathbb {P}}^{2}\\)</span> blown-up in one or two points can appear as a closed fiber of a del Pezzo fibration <span>\\(\\pi :X\\rightarrow {\\mathbb {P}}^{1}\\)</span> whose total space <i>X</i> is a <span>\\({\\mathbb {Q}}\\)</span>-factorial threefold with terminal singularities which contains <span>\\({\\mathbb {A}}^{3}\\)</span> as the complement of the union of a closed fiber of <span>\\(\\pi \\)</span> and a prime divisor <span>\\(B_{h}\\)</span> horizontal for <span>\\(\\pi \\)</span>. For such completions, we also give a complete description of integral curves that can appear as general fibers of the induced morphism <span>\\(\\bar{\\pi }:B_{h}\\rightarrow {\\mathbb {P}}^{1}\\)</span>.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"70 3","pages":"731 - 759"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00499-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We give constructions of completions of the affine 3-space into total spaces of del Pezzo fibrations of every degree other than 7 over the projective line. We show in particular that every del Pezzo surface other than \({\mathbb {P}}^{2}\) blown-up in one or two points can appear as a closed fiber of a del Pezzo fibration \(\pi :X\rightarrow {\mathbb {P}}^{1}\) whose total space X is a \({\mathbb {Q}}\)-factorial threefold with terminal singularities which contains \({\mathbb {A}}^{3}\) as the complement of the union of a closed fiber of \(\pi \) and a prime divisor \(B_{h}\) horizontal for \(\pi \). For such completions, we also give a complete description of integral curves that can appear as general fibers of the induced morphism \(\bar{\pi }:B_{h}\rightarrow {\mathbb {P}}^{1}\).

仿射 3 空间对德尔佩佐纤维的补全
我们给出了将仿射 3 空间补全为投影线上每一个度数(7 度除外)的德尔佩佐纤维的总空间的构造。我们特别指出,除了 \({\mathbb {P}}^{2}\) 在一个或两个点上炸开的德尔佩佐曲面之外,每个德尔佩佐曲面都可以作为德尔佩佐纤度 \(\pi :X\rightarrow {\mathbb {P}}^{1}\)的总空间X是一个具有终端奇点的\({\mathbb {Q}}\)-因子三褶,它包含\({\mathbb {A}}^{3}\) 作为\(\pi \)的封闭纤维与素除子\(B_{h}\)水平的联合的补集。对于这样的补集,我们也给出了关于积分曲线的完整描述,这些曲线可以作为诱导态化 \(\bar\pi }:B_{h}\rightarrow {mathbb {P}}^{1}\) 的一般纤维出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信