Are Emotions Conveyed Across Machine Translations? Establishing an Analytical Process for the Effectiveness of Multilingual Sentiment Analysis with Italian Text
Richard Anderson, Carmela Scala, Jim Samuel, Vivek Kumar, P. Jain
{"title":"Are Emotions Conveyed Across Machine Translations? Establishing an Analytical Process for the Effectiveness of Multilingual Sentiment Analysis with Italian Text","authors":"Richard Anderson, Carmela Scala, Jim Samuel, Vivek Kumar, P. Jain","doi":"10.54116/jbdai.v2i1.30","DOIUrl":null,"url":null,"abstract":"\n \n \nAbstract Natural language processing (NLP) is being widely used globally for a variety of value-creation tasks ranging from chat-bots and machine translations to sentiment and topic analysis and multilingual large language models (LLMs). However, most of the advances are initially implemented within the English language framework, and it takes time and resources to develop comparable resources in other languages. The advances in machine translations have enabled the rapid and effective conversion of content in global languages into English and vice-versa. This creates potential opportunities to apply English language NLP methods and tools to other languages via machine translations. However, although this idea is powerful, it needs to be validated and processes and best practices need to be developed and kept updated. The present research is an effort to contribute to the development of best practices and an evaluation framework. We present a systematic and repeatable state-of-the-art process to evaluate the viability of applying English language sentiment analysis tools to Italian text by using multiple English language machine translation mechanisms such that it can be easily extended to other languages. \n \n \n","PeriodicalId":516603,"journal":{"name":"Journal of Big Data and Artificial Intelligence","volume":"1 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54116/jbdai.v2i1.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Natural language processing (NLP) is being widely used globally for a variety of value-creation tasks ranging from chat-bots and machine translations to sentiment and topic analysis and multilingual large language models (LLMs). However, most of the advances are initially implemented within the English language framework, and it takes time and resources to develop comparable resources in other languages. The advances in machine translations have enabled the rapid and effective conversion of content in global languages into English and vice-versa. This creates potential opportunities to apply English language NLP methods and tools to other languages via machine translations. However, although this idea is powerful, it needs to be validated and processes and best practices need to be developed and kept updated. The present research is an effort to contribute to the development of best practices and an evaluation framework. We present a systematic and repeatable state-of-the-art process to evaluate the viability of applying English language sentiment analysis tools to Italian text by using multiple English language machine translation mechanisms such that it can be easily extended to other languages.