Sistem Pengenalan Wajah pada Sistem KYC dengan Algoritma Local Binary Pattern Histogram

Hafidz Ubaidillah, Universitas Muhammadiyah Gresik, Henny Dwi Bhakti, Jl. Sumatera, Gkb Gresik
{"title":"Sistem Pengenalan Wajah pada Sistem KYC dengan Algoritma Local Binary Pattern Histogram","authors":"Hafidz Ubaidillah, Universitas Muhammadiyah Gresik, Henny Dwi Bhakti, Jl. Sumatera, Gkb Gresik","doi":"10.55606/juitik.v4i1.754","DOIUrl":null,"url":null,"abstract":"With the increasing internet usage post-pandemic, ensuring the security of a fintech application becomes imperative. Bangbeli implements KYC procedures using facial recognition technology and stringent security protocols to verify identities and safeguard users' personal data in compliance with Bank Indonesia regulations. Utilizing Haar Cascade Classifier, Local Binary Pattern Histogram, and histogram equalization, an API (Application Programming Interface) has been created for facial training and prediction. These methods were chosen for their credibility, achieving an 88% accuracy with 33 samples and 90% with 10 samples. This study focuses on constructing an API for mobile services at Bangbeli, achieving 87.5% accuracy, 81.25% precision, 87.5% recall, and a 25% error rate. The model demonstrates good performance in facial recognition, with an acceptable error rate. Although precision is slightly lower than recall, it suggests the model is more inclined to identify most positive data with some errors rather than discard potentially identifiable faces.","PeriodicalId":500766,"journal":{"name":"Jurnal Ilmiah Teknik Informatika dan Komunikasi","volume":"34 8-9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah Teknik Informatika dan Komunikasi","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.55606/juitik.v4i1.754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing internet usage post-pandemic, ensuring the security of a fintech application becomes imperative. Bangbeli implements KYC procedures using facial recognition technology and stringent security protocols to verify identities and safeguard users' personal data in compliance with Bank Indonesia regulations. Utilizing Haar Cascade Classifier, Local Binary Pattern Histogram, and histogram equalization, an API (Application Programming Interface) has been created for facial training and prediction. These methods were chosen for their credibility, achieving an 88% accuracy with 33 samples and 90% with 10 samples. This study focuses on constructing an API for mobile services at Bangbeli, achieving 87.5% accuracy, 81.25% precision, 87.5% recall, and a 25% error rate. The model demonstrates good performance in facial recognition, with an acceptable error rate. Although precision is slightly lower than recall, it suggests the model is more inclined to identify most positive data with some errors rather than discard potentially identifiable faces.
采用局部二进制模式直方图算法的 KYC 系统人脸识别系统
随着大流行后互联网使用率的不断提高,确保金融技术应用的安全性变得势在必行。Bangbeli 利用面部识别技术和严格的安全协议实施 KYC 程序,以验证身份并保护用户的个人数据,以符合印尼银行的规定。利用哈尔级联分类器、局部二进制模式直方图和直方图均衡化,创建了用于面部训练和预测的应用程序接口(API)。选择这些方法是因为它们的可信度高,33 个样本的准确率达到 88%,10 个样本的准确率达到 90%。本研究的重点是为 Bangbeli 的移动服务构建一个应用程序接口,其准确率达到 87.5%,精确率达到 81.25%,召回率达到 87.5%,错误率为 25%。该模型在面部识别方面表现良好,错误率在可接受范围内。虽然精确度略低于召回率,但这表明该模型更倾向于识别有一些错误的大多数正面数据,而不是放弃潜在的可识别人脸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信