Edanur Büyüktuna, Elif Dilek, Fatma Nur Yorgancılar, Ramazan Çetin, Ali Ağçal
{"title":"A WIRELESS POWER TRANSFER SYSTEM DESIGN FOR CHARGING OF INTRA-BODY IMPLANT DEVICES","authors":"Edanur Büyüktuna, Elif Dilek, Fatma Nur Yorgancılar, Ramazan Çetin, Ali Ağçal","doi":"10.17482/uumfd.1269483","DOIUrl":null,"url":null,"abstract":"Wireless power transfer (WPT) presents numerous possibilities for recharging electronic devices in challenging environments. Charging of biomedical devices within the body is among the available opportunities. Inductively coupled WPT is a dependable and effective solution for powering these devices. Energy is transferred from the transmitter to the receiver in the inductively coupled WPT system through the use of coils and magnetic coupling. A WPT system was designed for this study, with dimensions of 4 cm by 4 cm, power output of 1 mW, and a frequency of 13.56 MHz. Series-Series (SS) topology was selected for its ease of handling and simple architecture. A square coil was selected as the receiver and transmitter coil structure due to its higher coupling factor than circular coils. ANSYS® Maxwell 3D was used to design the coils and perform magnetic analysis. In the ANSYS® HFSS program, the WPT system was placed inside the male human model and the electromagnetic exposure of the WPT on humans was examined. The magnetic scattering of the WPT system was within the safe values specified by IEEE and ICNIRP standards.","PeriodicalId":23451,"journal":{"name":"Uludağ University Journal of The Faculty of Engineering","volume":"12 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uludağ University Journal of The Faculty of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17482/uumfd.1269483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless power transfer (WPT) presents numerous possibilities for recharging electronic devices in challenging environments. Charging of biomedical devices within the body is among the available opportunities. Inductively coupled WPT is a dependable and effective solution for powering these devices. Energy is transferred from the transmitter to the receiver in the inductively coupled WPT system through the use of coils and magnetic coupling. A WPT system was designed for this study, with dimensions of 4 cm by 4 cm, power output of 1 mW, and a frequency of 13.56 MHz. Series-Series (SS) topology was selected for its ease of handling and simple architecture. A square coil was selected as the receiver and transmitter coil structure due to its higher coupling factor than circular coils. ANSYS® Maxwell 3D was used to design the coils and perform magnetic analysis. In the ANSYS® HFSS program, the WPT system was placed inside the male human model and the electromagnetic exposure of the WPT on humans was examined. The magnetic scattering of the WPT system was within the safe values specified by IEEE and ICNIRP standards.