Qiyuan Zhao, George Pîrlea, Zhendong Ang, Umang Mathur, Ilya Sergey
{"title":"Rooting for Efficiency: Mechanised Reasoning about Array-Based Trees in Separation Logic","authors":"Qiyuan Zhao, George Pîrlea, Zhendong Ang, Umang Mathur, Ilya Sergey","doi":"10.1145/3636501.3636944","DOIUrl":null,"url":null,"abstract":"Array-based encodings of tree structures are often preferable to linked or abstract data type-based representations for efficiency reasons. Compared to the more traditional encodings, array-based trees do not immediately offer convenient induction principles, and the programs that manipulate them often implement traversals non-recursively, requiring complex loop invariants for their correctness proofs. In this work, we provide a set of definitions, lemmas, and reasoning principles that streamline proofs about array-based trees and programs that work with them. We showcase our proof techniques via a series of small but characteristic examples, culminating with a large case study: verification of a C implementation of a recently published tree clock data structure in a Separation Logic embedded into Coq.","PeriodicalId":516581,"journal":{"name":"Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs","volume":"45 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3636501.3636944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Array-based encodings of tree structures are often preferable to linked or abstract data type-based representations for efficiency reasons. Compared to the more traditional encodings, array-based trees do not immediately offer convenient induction principles, and the programs that manipulate them often implement traversals non-recursively, requiring complex loop invariants for their correctness proofs. In this work, we provide a set of definitions, lemmas, and reasoning principles that streamline proofs about array-based trees and programs that work with them. We showcase our proof techniques via a series of small but characteristic examples, culminating with a large case study: verification of a C implementation of a recently published tree clock data structure in a Separation Logic embedded into Coq.