A new method for the extraction of shoreline based on point cloud distribution characteristics

chao lv, weihua li, Jianglin Liu, jiuming li
{"title":"A new method for the extraction of shoreline based on point cloud distribution characteristics","authors":"chao lv, weihua li, Jianglin Liu, jiuming li","doi":"10.1117/12.3014390","DOIUrl":null,"url":null,"abstract":"The commonly used shoreline extraction methods need to go through the generation process of point cloud digital elevation model (DEM) with large amount of calculation and easy to introduce errors. This proposed method used the change law of the coordinate value of the point at the time of obtaining the data due to the consistent acquisition method, puts forward the algorithm, and improves the accuracy and efficiency of the algorithm, so that it can quickly and accurately extract the boundary point cloud of the coastal zone, properly process the extracted boundary point cloud and transform it into the coastline point cloud in the strict sense. Compared with the measured coastline data and the coastline data extracted by isoline tracking method, the visual and quantitative data show that the extraction effect of this method is more continuous and the accuracy is higher. It can be seen from the data table that the overall standard deviation and variance of coastline extracted by this method are reduced from 0.3726 and 0.1415 of isoline tracking method to 0.1632 and 0.0266 respectively","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"31 4","pages":"129692L - 129692L-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3014390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The commonly used shoreline extraction methods need to go through the generation process of point cloud digital elevation model (DEM) with large amount of calculation and easy to introduce errors. This proposed method used the change law of the coordinate value of the point at the time of obtaining the data due to the consistent acquisition method, puts forward the algorithm, and improves the accuracy and efficiency of the algorithm, so that it can quickly and accurately extract the boundary point cloud of the coastal zone, properly process the extracted boundary point cloud and transform it into the coastline point cloud in the strict sense. Compared with the measured coastline data and the coastline data extracted by isoline tracking method, the visual and quantitative data show that the extraction effect of this method is more continuous and the accuracy is higher. It can be seen from the data table that the overall standard deviation and variance of coastline extracted by this method are reduced from 0.3726 and 0.1415 of isoline tracking method to 0.1632 and 0.0266 respectively
基于点云分布特征的海岸线提取新方法
常用的海岸线提取方法需要经过点云数字高程模型(DEM)的生成过程,计算量大,容易引入误差。本文提出的方法利用数据获取时点的坐标值因获取方式一致而产生的变化规律,提出了算法,提高了算法的精度和效率,从而能够快速准确地提取海岸带边界点云,并对提取的边界点云进行适当处理,转化为严格意义上的海岸线点云。与实测海岸线数据和孤立线跟踪法提取的海岸线数据相比,直观定量数据表明,该方法的提取效果更连续,精度更高。从数据表中可以看出,该方法提取的海岸线总体标准偏差和方差分别从孤立线跟踪法的 0.3726 和 0.1415 降低到 0.1632 和 0.0266
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信