{"title":"INFLUENCE ON THE QUALITY OF PLASTERING WORK PRODUCTION PARAMETERS OF THE PLASTERING ROBOT","authors":"R. Sharapov, N. Shihov, A. Agarkov","doi":"10.34031/2071-7318-2024-9-2-90-99","DOIUrl":null,"url":null,"abstract":"The article considers the main aspects of studying the effective use of plastering machines and mixtures in construction through the use of automated and mechanized systems, units and robots. Theoretical aspect of the study of the process of plaster layer compaction with the help of a vibration platform of a robot plasterer with adjustable parameters. The main design and technological parameters of vibration compaction of the plaster layer and their influence on the efficiency of the process of compaction of vertical walls are revealed. The methods of experimental research are described, as well as experimental installations on which the laboratory experiment was carried out. The use of this technology allows to solve the problem of time costs and increase labor productivity indicators, as well as aspects of economic nature. When changing the physical and mechanical characteristics of the vibration platform its dependence of variation factors allows to form the most favorable conditions for the mechanical effect of vibrations on the efficiency of the process of plastering vertical walls. Plastering mixtures for obtaining a plaster layer are studied, the main physical and mechanical characteristics are analyzed, the requirements to be taken into account in the process of plastering are analyzed. The paper presents a comparison of physical and mechanical characteristics of the vibration platform, reveals the advantages and disadvantages of using different combinations of parameters. It is established that the use of a certain combination or change of one important parameter contributes to the increase of physical and mechanical characteristics in comparison with the traditional method of mechanical action.","PeriodicalId":9367,"journal":{"name":"Bulletin of Belgorod State Technological University named after. V. G. Shukhov","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Belgorod State Technological University named after. V. G. Shukhov","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34031/2071-7318-2024-9-2-90-99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The article considers the main aspects of studying the effective use of plastering machines and mixtures in construction through the use of automated and mechanized systems, units and robots. Theoretical aspect of the study of the process of plaster layer compaction with the help of a vibration platform of a robot plasterer with adjustable parameters. The main design and technological parameters of vibration compaction of the plaster layer and their influence on the efficiency of the process of compaction of vertical walls are revealed. The methods of experimental research are described, as well as experimental installations on which the laboratory experiment was carried out. The use of this technology allows to solve the problem of time costs and increase labor productivity indicators, as well as aspects of economic nature. When changing the physical and mechanical characteristics of the vibration platform its dependence of variation factors allows to form the most favorable conditions for the mechanical effect of vibrations on the efficiency of the process of plastering vertical walls. Plastering mixtures for obtaining a plaster layer are studied, the main physical and mechanical characteristics are analyzed, the requirements to be taken into account in the process of plastering are analyzed. The paper presents a comparison of physical and mechanical characteristics of the vibration platform, reveals the advantages and disadvantages of using different combinations of parameters. It is established that the use of a certain combination or change of one important parameter contributes to the increase of physical and mechanical characteristics in comparison with the traditional method of mechanical action.