Optimizing Smart Factories: A Data-Driven Approach

Janne Heilala, Antti Salminen, Wallace Moreira Bessa, Jussi Kantola
{"title":"Optimizing Smart Factories: A Data-Driven Approach","authors":"Janne Heilala, Antti Salminen, Wallace Moreira Bessa, Jussi Kantola","doi":"10.34257/gjregvol23is3pg15","DOIUrl":null,"url":null,"abstract":"Since the first industrial revolution, the leading role of emerging technologies has been highlighted in modernizing the industry and developing the workforce. This study explores the impact of Industry 4.0 digital technologies on manufacturing competitiveness, focusing on Finnish SMEs within the EU with a sample (n = 123). It utilizes extensive 2022 European Manufacturing Survey (EMS22) data. Advanced statistical techniques reveal complex connections between automation, competitive edge on services, and innovation models, among other factors. Robust statistical methods, including component and reliability analyses, reinforced the findings. The conclusion offers critical insights and identifies areas for further research in combining innovative manufacturing practices with technology education.","PeriodicalId":342934,"journal":{"name":"Global Journal of Researches in Engineering","volume":"93 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Researches in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34257/gjregvol23is3pg15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Since the first industrial revolution, the leading role of emerging technologies has been highlighted in modernizing the industry and developing the workforce. This study explores the impact of Industry 4.0 digital technologies on manufacturing competitiveness, focusing on Finnish SMEs within the EU with a sample (n = 123). It utilizes extensive 2022 European Manufacturing Survey (EMS22) data. Advanced statistical techniques reveal complex connections between automation, competitive edge on services, and innovation models, among other factors. Robust statistical methods, including component and reliability analyses, reinforced the findings. The conclusion offers critical insights and identifies areas for further research in combining innovative manufacturing practices with technology education.
优化智能工厂:数据驱动法
自第一次工业革命以来,新兴技术在工业现代化和劳动力发展中的主导作用一直备受瞩目。本研究以欧盟范围内的芬兰中小企业为样本(n = 123),探讨了工业 4.0 数字技术对制造业竞争力的影响。研究利用了大量 2022 年欧洲制造业调查(EMS22)数据。先进的统计技术揭示了自动化、服务竞争优势和创新模式等因素之间的复杂联系。包括组件和可靠性分析在内的可靠统计方法强化了研究结果。结论提供了重要见解,并指出了将创新制造实践与技术教育相结合的进一步研究领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信