A Novel Approach to predict the Stock Price using LSTM and Linear Regression

Preetjot Kaur, Karan Marwaha, Keshav Kumar
{"title":"A Novel Approach to predict the Stock Price using LSTM and Linear Regression","authors":"Preetjot Kaur, Karan Marwaha, Keshav Kumar","doi":"10.32628/ijsrset2411111","DOIUrl":null,"url":null,"abstract":"Stock price prediction is a challenging and crucial task in financial markets. Traditional methods often struggle to capture the complex patterns present in stock price movements. In this study, we propose a hybrid model combining Long Short-Term Memory (LSTM) and Linear Regression techniques to improve the accuracy and robustness of stock price predictions. We evaluate the performance of our hybrid model using historical stock price data and compare it with individual LSTM and linear regression models. The experiments demonstrate that the hybrid model outperforms the standalone models in terms of accuracy and robustness.","PeriodicalId":14228,"journal":{"name":"International Journal of Scientific Research in Science, Engineering and Technology","volume":"55 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Science, Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/ijsrset2411111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stock price prediction is a challenging and crucial task in financial markets. Traditional methods often struggle to capture the complex patterns present in stock price movements. In this study, we propose a hybrid model combining Long Short-Term Memory (LSTM) and Linear Regression techniques to improve the accuracy and robustness of stock price predictions. We evaluate the performance of our hybrid model using historical stock price data and compare it with individual LSTM and linear regression models. The experiments demonstrate that the hybrid model outperforms the standalone models in terms of accuracy and robustness.
利用 LSTM 和线性回归预测股价的新方法
股票价格预测是金融市场中一项具有挑战性的重要任务。传统方法往往难以捕捉股价走势中存在的复杂模式。在本研究中,我们提出了一种结合长短期记忆(LSTM)和线性回归技术的混合模型,以提高股价预测的准确性和鲁棒性。我们利用历史股价数据评估了混合模型的性能,并将其与单独的 LSTM 和线性回归模型进行了比较。实验证明,混合模型在准确性和稳健性方面都优于独立模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信