Mathematical Modelling and Deep Learning: Innovations in E-Commerce Sentiment Analysis

Q4 Mathematics
Et al. Ashish Suresh Awate
{"title":"Mathematical Modelling and Deep Learning: Innovations in E-Commerce Sentiment Analysis","authors":"Et al. Ashish Suresh Awate","doi":"10.52783/anvi.v27.317","DOIUrl":null,"url":null,"abstract":"This research explores e-commerce dynamics, focusing on the challenge of predicting customer churn using deep learning [65]. It integrates and analyses both textual and transactional data, including social media posts and customer feedback [59]. The approach uses an advanced deep learning model, involving data collection, pre-processing, and feature extraction [40]. Novel methods fuse data to create a detailed customer profile combining sentiment analysis with behavioural insights derived from transaction data [25]. The deep learning architecture is designed to analyse and predict customer sentiments and purchasing behaviours, informed by the latest research [65]. This study is significant as it provides an innovative solution for predicting customer churn in e-commerce, aiding sustainability [45]. It also enables targeted retention strategies and personalized customer engagement [59]. Additionally, it contributes insights to big data analytics and customer relationship management in e-commerce, showcasing deep learning's potential in transforming business practices and enhancing customer experience [40].","PeriodicalId":40035,"journal":{"name":"Advances in Nonlinear Variational Inequalities","volume":"12 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Variational Inequalities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/anvi.v27.317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This research explores e-commerce dynamics, focusing on the challenge of predicting customer churn using deep learning [65]. It integrates and analyses both textual and transactional data, including social media posts and customer feedback [59]. The approach uses an advanced deep learning model, involving data collection, pre-processing, and feature extraction [40]. Novel methods fuse data to create a detailed customer profile combining sentiment analysis with behavioural insights derived from transaction data [25]. The deep learning architecture is designed to analyse and predict customer sentiments and purchasing behaviours, informed by the latest research [65]. This study is significant as it provides an innovative solution for predicting customer churn in e-commerce, aiding sustainability [45]. It also enables targeted retention strategies and personalized customer engagement [59]. Additionally, it contributes insights to big data analytics and customer relationship management in e-commerce, showcasing deep learning's potential in transforming business practices and enhancing customer experience [40].
数学建模与深度学习:电子商务情感分析的创新
这项研究探讨了电子商务动态,重点关注利用深度学习预测客户流失的挑战[65]。它整合并分析了文本数据和交易数据,包括社交媒体帖子和客户反馈[59]。该方法使用先进的深度学习模型,涉及数据收集、预处理和特征提取 [40]。新方法将数据融合在一起,结合情感分析和从交易数据中获得的行为洞察力,创建详细的客户档案[25]。深度学习架构旨在分析和预测客户情绪和购买行为,并参考最新研究成果[65]。这项研究意义重大,因为它为预测电子商务中的客户流失提供了创新解决方案,有助于可持续发展[45]。它还能制定有针对性的客户挽留战略和个性化的客户参与[59]。此外,它还为电子商务中的大数据分析和客户关系管理提供了见解,展示了深度学习在改变业务实践和提升客户体验方面的潜力[40]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信