Double Restriction of Bismuth Nanoparticles by Carbon Matrixes for Ultralong−lifespan Sodium Storage

Fuchao Huang, Zheng Liu, Ke Cao, Zhuangjun Fan
{"title":"Double Restriction of Bismuth Nanoparticles by Carbon Matrixes for Ultralong−lifespan Sodium Storage","authors":"Fuchao Huang, Zheng Liu, Ke Cao, Zhuangjun Fan","doi":"10.56028/aetr.9.1.317.2024","DOIUrl":null,"url":null,"abstract":"Alloying-type bismuth (Bi) anodes show a high theoretical capacity for sodium-ion batteries (SIB), yet their huge volume expansion and electrode pulverization resulted in poor electrochemical stability. Herein, we proposed a feasible strategy for the preparation of carbon/Bi composite material in which the Bi nanoparticles are uniformly dispersed in the double-layered carbon matrix. Benefiting from the synergistic confinement of the external coating of graphene and the internal layer of MOF-derived carbon, the volumetric expansion and large chemo-mechanical stress of Bi nanoparticles are effectively buffered. Therefore, the GAB@GO-800 anode exhibits a dramatically reversible capacity of 328 mA h g−1 at 0.1 A g−1, exceptional rate capability (299 mA h g−1 at 5 A g−1), and ultrahigh stability of 255 mA h g−1 at 2 A g−1 over 2000 cycles. Such hybrid carbon confinemental strategy via a combination of graphene coating and MOF-derived carbon is expected to be a promising method for the alloying-type anodes of SIBs.","PeriodicalId":355471,"journal":{"name":"Advances in Engineering Technology Research","volume":"47 1-2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56028/aetr.9.1.317.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alloying-type bismuth (Bi) anodes show a high theoretical capacity for sodium-ion batteries (SIB), yet their huge volume expansion and electrode pulverization resulted in poor electrochemical stability. Herein, we proposed a feasible strategy for the preparation of carbon/Bi composite material in which the Bi nanoparticles are uniformly dispersed in the double-layered carbon matrix. Benefiting from the synergistic confinement of the external coating of graphene and the internal layer of MOF-derived carbon, the volumetric expansion and large chemo-mechanical stress of Bi nanoparticles are effectively buffered. Therefore, the GAB@GO-800 anode exhibits a dramatically reversible capacity of 328 mA h g−1 at 0.1 A g−1, exceptional rate capability (299 mA h g−1 at 5 A g−1), and ultrahigh stability of 255 mA h g−1 at 2 A g−1 over 2000 cycles. Such hybrid carbon confinemental strategy via a combination of graphene coating and MOF-derived carbon is expected to be a promising method for the alloying-type anodes of SIBs.
碳基质双重限制纳米铋,实现超长寿命钠储存
合金型铋(Bi)阳极在钠离子电池(SIB)中显示出较高的理论容量,但其巨大的体积膨胀和电极粉碎导致电化学稳定性较差。在此,我们提出了一种制备碳/铋复合材料的可行策略,将铋纳米颗粒均匀分散在双层碳基质中。得益于外层石墨烯和内层 MOF 衍生碳的协同限制作用,Bi 纳米粒子的体积膨胀和巨大的化学机械应力得到了有效缓冲。因此,GAB@GO-800 阳极在 0.1 A g-1 条件下的可逆容量高达 328 mA h g-1,速率能力出众(5 A g-1 条件下为 299 mA h g-1),并且在 2 A g-1 条件下具有超高稳定性,可在 2000 次循环中达到 255 mA h g-1。这种通过石墨烯涂层和 MOF 衍生碳相结合的混合碳约束策略有望成为 SIB 的合金型阳极的一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信