Universal adjacency spectrum of the cozero-divisor graph and its complement on a finite commutative ring with unity

Saraswati Bajaj, P. Panigrahi
{"title":"Universal adjacency spectrum of the cozero-divisor graph and its complement on a finite commutative ring with unity","authors":"Saraswati Bajaj, P. Panigrahi","doi":"10.1142/s1793830923501203","DOIUrl":null,"url":null,"abstract":"For a finite simple undirected graph [Formula: see text], the universal adjacency matrix [Formula: see text] is a linear combination of the adjacency matrix [Formula: see text], the degree diagonal matrix [Formula: see text], the identity matrix [Formula: see text] and the all-ones matrix [Formula: see text], that is [Formula: see text], where [Formula: see text] and [Formula: see text]. The cozero-divisor graph [Formula: see text] of a finite commutative ring [Formula: see text] with unity is a simple undirected graph with the set of all nonzero nonunits of [Formula: see text] as vertices and two vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] and [Formula: see text]. In this paper, we study structural properties of [Formula: see text] by defining an equivalence relation on its vertex set in terms of principal ideals of the ring [Formula: see text]. Then we obtain the universal adjacency eigenpairs of [Formula: see text] and its complement, and as a consequence one may obtain several spectra like the adjacency, Seidel, Laplacian, signless Laplacian, normalized Laplacian, generalized adjacency and convex linear combination of the adjacency and degree diagonal matrix of [Formula: see text] and [Formula: see text] in an unified way. Moreover, we get the universal adjacency eigenpairs of the cozero-divisor graph and its complement for a reduced ring and the ring of integers modulo [Formula: see text] in a simpler form.","PeriodicalId":504044,"journal":{"name":"Discrete Mathematics, Algorithms and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics, Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830923501203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a finite simple undirected graph [Formula: see text], the universal adjacency matrix [Formula: see text] is a linear combination of the adjacency matrix [Formula: see text], the degree diagonal matrix [Formula: see text], the identity matrix [Formula: see text] and the all-ones matrix [Formula: see text], that is [Formula: see text], where [Formula: see text] and [Formula: see text]. The cozero-divisor graph [Formula: see text] of a finite commutative ring [Formula: see text] with unity is a simple undirected graph with the set of all nonzero nonunits of [Formula: see text] as vertices and two vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] and [Formula: see text]. In this paper, we study structural properties of [Formula: see text] by defining an equivalence relation on its vertex set in terms of principal ideals of the ring [Formula: see text]. Then we obtain the universal adjacency eigenpairs of [Formula: see text] and its complement, and as a consequence one may obtain several spectra like the adjacency, Seidel, Laplacian, signless Laplacian, normalized Laplacian, generalized adjacency and convex linear combination of the adjacency and degree diagonal matrix of [Formula: see text] and [Formula: see text] in an unified way. Moreover, we get the universal adjacency eigenpairs of the cozero-divisor graph and its complement for a reduced ring and the ring of integers modulo [Formula: see text] in a simpler form.
具有统一性的有限交换环上的零分叉图的通用邻接谱及其补集
对于有限简单无向图[式:见正文],通用邻接矩阵[式:见正文]是邻接矩阵[式:见正文]、度对角矩阵[式:见正文]、身份矩阵[式:见正文]和全一矩阵[式:见正文]的线性组合,即[式:见正文],其中[式:见正文]和[式:见正文]。有限交换环[式:见正文]的零分图[式:见正文]是以[式:见正文]所有非零非单元的集合为顶点的简单无向图,且当且仅当[式:见正文]和[式:见正文]相邻时,[式:见正文]和[式:见正文]两个顶点相邻。在本文中,我们用环[公式:见正文]的主理想定义了[公式:见正文]顶点集的等价关系,从而研究了[公式:见正文]的结构性质。然后,我们得到了[公式:见正文]及其补集的通用邻接特征对,并由此统一得到了[公式:见正文]和[公式:见正文]的邻接矩阵和度对角矩阵的邻接、塞德尔、拉普拉卡、无符号拉普拉卡、归一化拉普拉卡、广义邻接和凸线性组合等几种谱。此外,我们还以更简单的形式得到了[公式:见正文]的缩减环和整数环模的零因子图及其补集的通用邻接特征对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信