THE NEWTON-RAPHSON METHOD OF REAL-VALUED FUNCTIONS IN DISCRETE METRIC SPACE

Indra Herdiana, I. Sihwaningrum, Agus Sugandha
{"title":"THE NEWTON-RAPHSON METHOD OF REAL-VALUED FUNCTIONS IN DISCRETE METRIC SPACE","authors":"Indra Herdiana, I. Sihwaningrum, Agus Sugandha","doi":"10.20884/1.jmp.2023.15.2.8875","DOIUrl":null,"url":null,"abstract":"This paper studies the Newton-Raphson method to approximate a root of a real-valued function in one-dimensional real discrete metric space. The method involves a derivative and is considered to be convergent very fast. However, the derivative is derived from the limit definition with respect to the Euclidean distance, different from that of the discrete metric space. This research investigates the Newton-Raphson method with respect to derivatives defined in discrete metric spaces by deriving the derivative first. The results show that the constructed Newton-Raphson method can be an alternative root-finding method exemplified by some examples. \nKeywords: Newton-Raphson method, discrete metric space, metric space derivative","PeriodicalId":516586,"journal":{"name":"Jurnal Ilmiah Matematika dan Pendidikan Matematika","volume":"9 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah Matematika dan Pendidikan Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20884/1.jmp.2023.15.2.8875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the Newton-Raphson method to approximate a root of a real-valued function in one-dimensional real discrete metric space. The method involves a derivative and is considered to be convergent very fast. However, the derivative is derived from the limit definition with respect to the Euclidean distance, different from that of the discrete metric space. This research investigates the Newton-Raphson method with respect to derivatives defined in discrete metric spaces by deriving the derivative first. The results show that the constructed Newton-Raphson method can be an alternative root-finding method exemplified by some examples. Keywords: Newton-Raphson method, discrete metric space, metric space derivative
离散度量空间实值函数的牛顿-拉夫逊方法
本文研究了在一维实离散度量空间中近似实值函数根的牛顿-拉斐森方法。该方法涉及导数,收敛速度非常快。然而,导数是根据欧几里得距离的极限定义导出的,与离散度量空间的极限定义不同。本研究针对离散度量空间中定义的导数,研究了牛顿-拉夫逊方法,首先导出导数。结果表明,通过一些实例,所构建的牛顿-拉斐森方法可以成为另一种寻根方法。关键词牛顿-拉斐森方法、离散度量空间、度量空间导数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信