Galton–Watson Theta-Processes in a Varying Environment

Q3 Mathematics
S. Sagitov, Yerakhmet Zhumayev
{"title":"Galton–Watson Theta-Processes in a Varying Environment","authors":"S. Sagitov, Yerakhmet Zhumayev","doi":"10.1515/eqc-2024-0001","DOIUrl":null,"url":null,"abstract":"\n <jats:p>We consider a special class of Galton–Watson theta-processes in a varying environment fully defined by four parameters, with two of them <jats:inline-formula id=\"j_eqc-2024-0001_ineq_9999\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mi>θ</m:mi>\n <m:mo>,</m:mo>\n <m:mi>r</m:mi>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_eqc-2024-0001_eq_0224.png\" />\n <jats:tex-math>{(\\theta,r)}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> being fixed over time <jats:italic>n</jats:italic>, and the other two <jats:inline-formula id=\"j_eqc-2024-0001_ineq_9998\">\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:msub>\n <m:mi>a</m:mi>\n <m:mi>n</m:mi>\n </m:msub>\n <m:mo>,</m:mo>\n <m:msub>\n <m:mi>c</m:mi>\n <m:mi>n</m:mi>\n </m:msub>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_eqc-2024-0001_eq_0227.png\" />\n <jats:tex-math>{(a_{n},c_{n})}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> characterizing the altering reproduction laws. We establish a sequence of transparent limit theorems for the theta-processes with possibly defective reproduction laws. These results may serve as a stepping stone towards incisive general results for the Galton–Watson processes in a varying environment.</jats:p>","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"45 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2024-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a special class of Galton–Watson theta-processes in a varying environment fully defined by four parameters, with two of them ( θ , r ) {(\theta,r)} being fixed over time n, and the other two ( a n , c n ) {(a_{n},c_{n})} characterizing the altering reproduction laws. We establish a sequence of transparent limit theorems for the theta-processes with possibly defective reproduction laws. These results may serve as a stepping stone towards incisive general results for the Galton–Watson processes in a varying environment.
变化环境中的加尔顿-沃森θ过程
我们考虑一类特殊的加尔顿-沃森 Theta 过程,它处于完全由四个参数定义的变化环境中,其中两个参数 ( θ , r ) {(\theta,r)} 在时间 n 上是固定的,另外两个 ( a n , c n ) {(a_{n},c_{n})}表征不断变化的再生产规律。我们为可能存在缺陷的再生产规律的θ过程建立了一系列透明极限定理。这些结果可以作为通向变化环境中加尔顿-沃森过程的精辟一般结果的垫脚石。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastics and Quality Control
Stochastics and Quality Control Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信