Jackson Celestino Fernandes, Leandro S. G. Carvalho, David Braga Fernandes de Oliveira, Elaine H. T. Oliveira, F. Pereira, Tanara Lauschner
{"title":"Complexidade versus dificuldade: Uma análise da sua correlação em questões de programação em juízes on-line","authors":"Jackson Celestino Fernandes, Leandro S. G. Carvalho, David Braga Fernandes de Oliveira, Elaine H. T. Oliveira, F. Pereira, Tanara Lauschner","doi":"10.5753/rbie.2024.3587","DOIUrl":null,"url":null,"abstract":"Ambientes de correção automática de código são cada vez mais usados no processo de ensino-aprendizagem de disciplinas de programação. Porém, um problema frequentemente enfrentado pelos professores que usam tais ambientes é determinar a dificuldade das questões cadastradas. Este trabalho tem como objetivo realizar uma análise de correlação entre métricas de complexidade de código e a dificuldade enfrentada pelos alunos, de maneira que seja possível prever automaticamente o nível de dificuldade de uma questão apenas conhecendo seu modelo de solução. Este estudo foi dividido em três etapas: i) análise da correlação de Spearman entre métricas de complexidade (extraídas da questão) e de dificuldade (extraídas da interação do aluno com a questão); ii) predição da classe de dificuldade de questões por meio de modelos de aprendizado de máquina para classificação; e iii) predição de métricas de dificuldade usando modelos de regressão. Quanto ao item i), observou-se que 96% das correlações foram fracas ou inexistentes entre métricas individuais de complexidade de código e de dificuldade, 4% de casos de correlação moderada e nenhum caso de correlação forte. Para o item ii), o maior f1-score obtido foi de 88%, considerando classificação com dois níveis de dificuldade (“fácil” e “difícil”), e f1-score máximo de 67%, considerando classificação com três níveis (“fácil”, “médio” e “difícil”). Para o item iii), o melhor resultado obtido foi um coeficiente de determinação ajustado de 63%.","PeriodicalId":383295,"journal":{"name":"Revista Brasileira de Informática na Educação","volume":"3 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Informática na Educação","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/rbie.2024.3587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ambientes de correção automática de código são cada vez mais usados no processo de ensino-aprendizagem de disciplinas de programação. Porém, um problema frequentemente enfrentado pelos professores que usam tais ambientes é determinar a dificuldade das questões cadastradas. Este trabalho tem como objetivo realizar uma análise de correlação entre métricas de complexidade de código e a dificuldade enfrentada pelos alunos, de maneira que seja possível prever automaticamente o nível de dificuldade de uma questão apenas conhecendo seu modelo de solução. Este estudo foi dividido em três etapas: i) análise da correlação de Spearman entre métricas de complexidade (extraídas da questão) e de dificuldade (extraídas da interação do aluno com a questão); ii) predição da classe de dificuldade de questões por meio de modelos de aprendizado de máquina para classificação; e iii) predição de métricas de dificuldade usando modelos de regressão. Quanto ao item i), observou-se que 96% das correlações foram fracas ou inexistentes entre métricas individuais de complexidade de código e de dificuldade, 4% de casos de correlação moderada e nenhum caso de correlação forte. Para o item ii), o maior f1-score obtido foi de 88%, considerando classificação com dois níveis de dificuldade (“fácil” e “difícil”), e f1-score máximo de 67%, considerando classificação com três níveis (“fácil”, “médio” e “difícil”). Para o item iii), o melhor resultado obtido foi um coeficiente de determinação ajustado de 63%.