Enhancing Image Captioning Using Deep Convolutional Generative Adversarial Networks

Q3 Computer Science
Tarun Jaiswal, Manju Pandey, Priyanka Tripathi
{"title":"Enhancing Image Captioning Using Deep Convolutional Generative Adversarial Networks","authors":"Tarun Jaiswal, Manju Pandey, Priyanka Tripathi","doi":"10.2174/0126662558282389231229063607","DOIUrl":null,"url":null,"abstract":"\n\nIntroduction: Image caption generation has long been a fundamental challenge in the\narea of computer vision (CV) and natural language processing (NLP). In this research, we present\nan innovative approach that harnesses the power of Deep Convolutional Generative Adversarial\nNetworks (DCGAN) and adversarial training to revolutionize the generation of natural\nand contextually relevant image captions.\n\n\n\nOur method significantly improves the\nfluency, coherence, and contextual relevance of generated captions and showcases the effectiveness\nof RL reward-based fine-tuning. Through a comprehensive evaluation of COCO datasets,\nour model demonstrates superior performance over baseline and state-of-the-art methods.\nOn the COCO dataset, our model outperforms current state-of-the-art (SOTA) models\nacross all metrics, achieving BLEU-4 (0.327), METEOR (0.249), Rough (0.525) and CIDEr\n(1.155) scores.\n\n\n\nThe integration of DCGAN and adversarial training opens new possibilities\nin image captioning, with applications spanning from automated content generation to enhanced\naccessibility solutions.\n\n\n\nThis research paves the way for more intelligent\nand context-aware image understanding systems, promising exciting future exploration and innovation\nprospects.\n","PeriodicalId":36514,"journal":{"name":"Recent Advances in Computer Science and Communications","volume":"61 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Computer Science and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0126662558282389231229063607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Image caption generation has long been a fundamental challenge in the area of computer vision (CV) and natural language processing (NLP). In this research, we present an innovative approach that harnesses the power of Deep Convolutional Generative Adversarial Networks (DCGAN) and adversarial training to revolutionize the generation of natural and contextually relevant image captions. Our method significantly improves the fluency, coherence, and contextual relevance of generated captions and showcases the effectiveness of RL reward-based fine-tuning. Through a comprehensive evaluation of COCO datasets, our model demonstrates superior performance over baseline and state-of-the-art methods. On the COCO dataset, our model outperforms current state-of-the-art (SOTA) models across all metrics, achieving BLEU-4 (0.327), METEOR (0.249), Rough (0.525) and CIDEr (1.155) scores. The integration of DCGAN and adversarial training opens new possibilities in image captioning, with applications spanning from automated content generation to enhanced accessibility solutions. This research paves the way for more intelligent and context-aware image understanding systems, promising exciting future exploration and innovation prospects.
利用深度卷积生成对抗网络加强图像字幕制作
简介长期以来,图像标题生成一直是计算机视觉(CV)和自然语言处理(NLP)领域的一项基本挑战。在这项研究中,我们提出了一种创新方法,利用深度卷积生成对抗网络(DCGAN)和对抗训练的力量,彻底改变了自然和上下文相关图像标题的生成。在 COCO 数据集上,我们的模型在所有指标上都优于目前最先进的模型(SOTA),达到了 BLEU-4 (0.327)、METEOR (0.249)、Rough (0.525) 和 CIDEr (1.155) 分数。DCGAN 与对抗训练的整合为图像字幕制作开辟了新的可能性,其应用范围从自动内容生成到增强的可访问性解决方案。这项研究为更加智能和上下文感知的图像理解系统铺平了道路,未来的探索和创新前景令人期待。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Recent Advances in Computer Science and Communications
Recent Advances in Computer Science and Communications Computer Science-Computer Science (all)
CiteScore
2.50
自引率
0.00%
发文量
142
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信