{"title":"Fast Kronecker Matrix-Matrix Multiplication on GPUs","authors":"Abhinav Jangda, Mohit Yadav","doi":"10.1145/3627535.3638489","DOIUrl":null,"url":null,"abstract":"Kronecker Matrix-Matrix Multiplication (Kron-Matmul) is the multiplication of a matrix with the Kronecker Product of several smaller matrices. Kron-Matmul is a core operation for many scientific and machine learning computations. State-of-the-art Kron-Matmul implementations utilize existing tensor algebra operations, such as matrix multiplication, transpose, and tensor matrix multiplication. However, this design choice prevents several Kron-Matmul specific optimizations, thus, leaving significant performance on the table. To address this issue, we present FastKron, an efficient technique for Kron-Matmul on single and multiple GPUs. FastKron is independent of linear algebra operations enabling several new optimizations for Kron-Matmul. Thus, it performs up to 40.7x and 7.85x faster than existing implementations on 1 and 16 GPUs respectively.","PeriodicalId":286119,"journal":{"name":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","volume":"242 9","pages":"390-403"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3627535.3638489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Kronecker Matrix-Matrix Multiplication (Kron-Matmul) is the multiplication of a matrix with the Kronecker Product of several smaller matrices. Kron-Matmul is a core operation for many scientific and machine learning computations. State-of-the-art Kron-Matmul implementations utilize existing tensor algebra operations, such as matrix multiplication, transpose, and tensor matrix multiplication. However, this design choice prevents several Kron-Matmul specific optimizations, thus, leaving significant performance on the table. To address this issue, we present FastKron, an efficient technique for Kron-Matmul on single and multiple GPUs. FastKron is independent of linear algebra operations enabling several new optimizations for Kron-Matmul. Thus, it performs up to 40.7x and 7.85x faster than existing implementations on 1 and 16 GPUs respectively.