Shintani descent for standard supercharacters of algebra groups

IF 0.5 2区 数学 Q3 MATHEMATICS
Carlos A. M. Andr'e, Ana L. Branco Correia, Joao Dias
{"title":"Shintani descent for standard supercharacters of algebra groups","authors":"Carlos A. M. Andr'e, Ana L. Branco Correia, Joao Dias","doi":"10.1142/s0218196724500073","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{A}(q)$ be a finite-dimensional nilpotent algebra over a finite field $\\mathbb{F}_{q}$ with $q$ elements, and let $G(q) = 1+\\mathcal{A}(q)$. On the other hand, let $\\Bbbk$ denote the algebraic closure of $\\mathbb{F}_{q}$, and let $\\mathcal{A} = \\mathcal{A}(q) \\otimes_{\\mathbb{F}_{q}} \\Bbbk$. Then $G = 1+\\mathcal{A}$ is an algebraic group over $\\Bbbk$ equipped with an $\\mathbb{F}_{q}$-rational structure given by the usual Frobenius map $F:G\\to G$, and $G(q)$ can be regarded as the fixed point subgroup $G^{F}$. For every $n \\in \\mathbb{N}$, the $n$th power $F^{n}:G\\to G$ is also a Frobenius map, and $G^{F^{n}}$ identifies with $G(q^{n}) = 1 + \\mathcal{A}(q^{n})$. The Frobenius map restricts to a group automorphism $F:G(q^{n})\\to G(q^{n})$, and hence it acts on the set of irreducible characters of $G(q^{n})$. Shintani descent provides a method to compare $F$-invariant irreducible characters of $G(q^{n})$ and irreducible characters of $G(q)$. In this paper, we show that it also provides a uniform way of studying supercharacters of $G(q^{n})$ for $n \\in \\mathbb{N}$. These groups form an inductive system with respect to the inclusion maps $G(q^{m}) \\to G(q^{n})$ whenever $m \\mid n$, and this fact allows us to study all supercharacter theories simultaneously, to establish connections between them, and to relate them to the algebraic group $G$. Indeed, we show that Shintani descent permits the definition of a certain ``superdual algebra'' which encodes information about the supercharacters of $G(q^{n})$ for $n \\in \\mathbb{N}$.","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218196724500073","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathcal{A}(q)$ be a finite-dimensional nilpotent algebra over a finite field $\mathbb{F}_{q}$ with $q$ elements, and let $G(q) = 1+\mathcal{A}(q)$. On the other hand, let $\Bbbk$ denote the algebraic closure of $\mathbb{F}_{q}$, and let $\mathcal{A} = \mathcal{A}(q) \otimes_{\mathbb{F}_{q}} \Bbbk$. Then $G = 1+\mathcal{A}$ is an algebraic group over $\Bbbk$ equipped with an $\mathbb{F}_{q}$-rational structure given by the usual Frobenius map $F:G\to G$, and $G(q)$ can be regarded as the fixed point subgroup $G^{F}$. For every $n \in \mathbb{N}$, the $n$th power $F^{n}:G\to G$ is also a Frobenius map, and $G^{F^{n}}$ identifies with $G(q^{n}) = 1 + \mathcal{A}(q^{n})$. The Frobenius map restricts to a group automorphism $F:G(q^{n})\to G(q^{n})$, and hence it acts on the set of irreducible characters of $G(q^{n})$. Shintani descent provides a method to compare $F$-invariant irreducible characters of $G(q^{n})$ and irreducible characters of $G(q)$. In this paper, we show that it also provides a uniform way of studying supercharacters of $G(q^{n})$ for $n \in \mathbb{N}$. These groups form an inductive system with respect to the inclusion maps $G(q^{m}) \to G(q^{n})$ whenever $m \mid n$, and this fact allows us to study all supercharacter theories simultaneously, to establish connections between them, and to relate them to the algebraic group $G$. Indeed, we show that Shintani descent permits the definition of a certain ``superdual algebra'' which encodes information about the supercharacters of $G(q^{n})$ for $n \in \mathbb{N}$.
代数群标准超字符的新谷下降
让 $\mathcal{A}(q)$ 是一个有限域 $\mathbb{F}_{q}$ 上有 $q$ 元素的有限维无势代数,并让 $G(q) = 1+\mathcal{A}(q)$.另一方面,让 $\Bbbk$ 表示 $\mathbb{F}_{q}$ 的代数闭包,并让 $\mathcal{A} = \mathcal{A}(q) \otimes_\mathbb{F}_{q}}.\Bbbk$.那么 $G = 1+\mathcal{A}$ 是一个在 $\Bbbk$ 上的代数群,具有由通常的 Frobenius 映射 $F:G\to G$ 给出的 $\mathbb{F}_{q}$ 有理结构,并且 $G(q)$ 可以看作是定点子群 $G^{F}$。对于每一个 $n \in \mathbb{N}$,$n$的幂 $F^{n}:G\to G$ 也是一个弗罗贝尼斯映射,并且 $G^{F^{n}}$ 与 $G(q^{n}) = 1 + \mathcal{A}(q^{n})$相一致。弗罗贝尼斯映射限制了$F:G(q^{n})\to G(q^{n})$的群自变,因此它作用于$G(q^{n})$的不可还原字符集。新谷下降提供了一种比较 $G(q^{n})$ 的 $F$ 不变不可还原字符与 $G(q)$ 的不可还原字符的方法。在本文中,我们证明它也为研究 $n \in \mathbb{N}$ 的 $G(q^{n})$ 的超字符提供了统一的方法。当 $m \mid n$ 时,这些群构成了一个关于包含映射 $G(q^{m}) \to G(q^{n})$ 的归纳系统,这一事实使我们能够同时研究所有超字符理论,建立它们之间的联系,并将它们与代数群 $G$ 联系起来。事实上,我们证明了新谷后裔允许定义某种 "超偶代数",它编码了 $n \in \mathbb{N}$ 的 $G(q^{n})$ 的超字符信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
66
审稿时长
6-12 weeks
期刊介绍: The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信