Analisis Data Time Series Menggunakan Model Kernel: Pemodelan Data Harga Saham MDKA

Suparti Suparti, R. Santoso
{"title":"Analisis Data Time Series Menggunakan Model Kernel: Pemodelan Data Harga Saham MDKA","authors":"Suparti Suparti, R. Santoso","doi":"10.13057/ijas.v6i1.79385","DOIUrl":null,"url":null,"abstract":"Classic time series data analysis techniques, such as autoregressive, model stationary data in which the values of prior observations influence the current observations through a process known as linear regression. There are several requirements for error assumptions in autoregressive, including independence, normal distribution with a zero mean and constant variance. It is frequently discovered that these assumptions are challenging to verify when modelling real data. Kernel time series regression is an alternative model that does not require error assumptions. Non-stationary time series data can be effectively modelled using the kernel time series method. Time series data that isn't yet stationary is made stationary first, then the data is modified by forming the current stationary time series data as the response variable and the previous period data as the predictor variable. Next, regression kernel modelling is carried out while applying kernel weight function and determining the optimal bandwidth. For development of science, the optimal bandwidth can be achieved by minimizing the MSE, CV, GCV, or UBR values. It is possible to use R2 or MAPE as the kernel time series regression model's goodness metric. A strong model is generated while modelling MDKA stock price data using kernel regression utilizing the Gaussian kernel function and optimal bandwidth selection using GCV since R2 is 0.9828372 more than 0.67 and MAPE is 1.985681% under 10%.Keywords: 3 time series; kernel regression; GCV; MDKA stock price.","PeriodicalId":112023,"journal":{"name":"Indonesian Journal of Applied Statistics","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13057/ijas.v6i1.79385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Classic time series data analysis techniques, such as autoregressive, model stationary data in which the values of prior observations influence the current observations through a process known as linear regression. There are several requirements for error assumptions in autoregressive, including independence, normal distribution with a zero mean and constant variance. It is frequently discovered that these assumptions are challenging to verify when modelling real data. Kernel time series regression is an alternative model that does not require error assumptions. Non-stationary time series data can be effectively modelled using the kernel time series method. Time series data that isn't yet stationary is made stationary first, then the data is modified by forming the current stationary time series data as the response variable and the previous period data as the predictor variable. Next, regression kernel modelling is carried out while applying kernel weight function and determining the optimal bandwidth. For development of science, the optimal bandwidth can be achieved by minimizing the MSE, CV, GCV, or UBR values. It is possible to use R2 or MAPE as the kernel time series regression model's goodness metric. A strong model is generated while modelling MDKA stock price data using kernel regression utilizing the Gaussian kernel function and optimal bandwidth selection using GCV since R2 is 0.9828372 more than 0.67 and MAPE is 1.985681% under 10%.Keywords: 3 time series; kernel regression; GCV; MDKA stock price.
使用核模型进行时间序列数据分析:建立 MDKA 股票价格数据模型
经典的时间序列数据分析技术,如自回归技术,是一种静态数据建模技术,在这种技术中,先前的观测值通过一个称为线性回归的过程影响当前的观测值。自回归对误差假设有几种要求,包括独立性、均值为零的正态分布和恒定方差。在对真实数据建模时,经常会发现这些假设难以验证。核时间序列回归是一种无需误差假设的替代模型。使用核时间序列方法可以有效地模拟非平稳时间序列数据。首先使尚未静止的时间序列数据静止,然后将当前静止的时间序列数据作为响应变量,将上一期数据作为预测变量,从而对数据进行修改。接下来,在应用核权重函数和确定最佳带宽的同时,进行回归核建模。对于科学发展而言,最佳带宽可以通过最小化 MSE、CV、GCV 或 UBR 值来实现。可以使用 R2 或 MAPE 作为核时间序列回归模型的好坏指标。由于 R2 为 0.9828372,大于 0.67,MAPE 为 1.985681%,小于 10%,因此利用高斯核函数的核回归和使用 GCV 的最优带宽选择对 MDKA 股票价格数据建模时生成了一个强大的模型:3时间序列;核回归;GCV;MDKA股价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信