Large Language Models for Scientific Information Extraction: An Empirical Study for Virology

Findings Pub Date : 2024-01-18 DOI:10.48550/arXiv.2401.10040
Mahsa Shamsabadi, Jennifer D'Souza, Sören Auer
{"title":"Large Language Models for Scientific Information Extraction: An Empirical Study for Virology","authors":"Mahsa Shamsabadi, Jennifer D'Souza, Sören Auer","doi":"10.48550/arXiv.2401.10040","DOIUrl":null,"url":null,"abstract":"In this paper, we champion the use of structured and semantic content representation of discourse-based scholarly communication, inspired by tools like Wikipedia infoboxes or structured Amazon product descriptions. These representations provide users with a concise overview, aiding scientists in navigating the dense academic landscape. Our novel automated approach leverages the robust text generation capabilities of LLMs to produce structured scholarly contribution summaries, offering both a practical solution and insights into LLMs’ emergent abilities.For LLMs, the prime focus is on improving their general intelligence as conversational agents. We argue that these models can also be applied effectively in information extraction (IE), specifically in complex IE tasks within terse domains like Science. This paradigm shift replaces the traditional modular, pipelined machine learning approach with a simpler objective expressed through instructions. Our results show that finetuned FLAN-T5 with 1000x fewer parameters than the state-of-the-art GPT-davinci is competitive for the task.","PeriodicalId":508951,"journal":{"name":"Findings","volume":"24 18","pages":"374-392"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2401.10040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we champion the use of structured and semantic content representation of discourse-based scholarly communication, inspired by tools like Wikipedia infoboxes or structured Amazon product descriptions. These representations provide users with a concise overview, aiding scientists in navigating the dense academic landscape. Our novel automated approach leverages the robust text generation capabilities of LLMs to produce structured scholarly contribution summaries, offering both a practical solution and insights into LLMs’ emergent abilities.For LLMs, the prime focus is on improving their general intelligence as conversational agents. We argue that these models can also be applied effectively in information extraction (IE), specifically in complex IE tasks within terse domains like Science. This paradigm shift replaces the traditional modular, pipelined machine learning approach with a simpler objective expressed through instructions. Our results show that finetuned FLAN-T5 with 1000x fewer parameters than the state-of-the-art GPT-davinci is competitive for the task.
用于科学信息提取的大型语言模型:病毒学实证研究
受维基百科信息框或结构化亚马逊产品描述等工具的启发,我们在本文中倡导使用结构化和语义化的内容表示法来表示基于话语的学术交流。这些表示法为用户提供了简明的概览,有助于科学家浏览密集的学术景观。我们新颖的自动方法利用 LLM 强大的文本生成能力来生成结构化的学术贡献摘要,既提供了实用的解决方案,又让人们深入了解了 LLM 的新兴能力。我们认为,这些模型也可以有效地应用于信息提取(IE),特别是科学等简洁领域的复杂 IE 任务。这种范式的转变取代了传统的模块化、流水线式机器学习方法,而是通过指令来表达更简单的目标。我们的研究结果表明,经过微调的 FLAN-T5 比最先进的 GPT-davinci 少了 1000 倍的参数,在执行任务时具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信