Quantum State Obfuscation from Classical Oracles

James Bartusek, Zvika Brakerski, V. Vaikuntanathan
{"title":"Quantum State Obfuscation from Classical Oracles","authors":"James Bartusek, Zvika Brakerski, V. Vaikuntanathan","doi":"10.48550/arXiv.2401.10200","DOIUrl":null,"url":null,"abstract":"A major unresolved question in quantum cryptography is whether it is possible to obfuscate arbitrary quantum computation. Indeed, there is much yet to understand about the feasibility of quantum obfuscation even in the classical oracle model, where one is given for free the ability to obfuscate any classical circuit. In this work, we develop a new array of techniques that we use to construct a quantum state obfuscator, a powerful notion formalized recently by Coladangelo and Gunn (arXiv:2311.07794) in their pursuit of better software copy-protection schemes. Quantum state obfuscation refers to the task of compiling a quantum program, consisting of a quantum circuit $C$ with a classical description and an auxiliary quantum state $\\ket{\\psi}$, into a functionally-equivalent obfuscated quantum program that hides as much as possible about $C$ and $\\ket{\\psi}$. We prove the security of our obfuscator when applied to any pseudo-deterministic quantum program, i.e. one that computes a (nearly) deterministic classical input / classical output functionality. Our security proof is with respect to an efficient classical oracle, which may be heuristically instantiated using quantum-secure indistinguishability obfuscation for classical circuits. Our result improves upon the recent work of Bartusek, Kitagawa, Nishimaki and Yamakawa (STOC 2023) who also showed how to obfuscate pseudo-deterministic quantum circuits in the classical oracle model, but only ones with a completely classical description. Furthermore, our result answers a question of Coladangelo and Gunn, who provide a construction of quantum state indistinguishability obfuscation with respect to a quantum oracle. Indeed, our quantum state obfuscator together with Coladangelo-Gunn gives the first candidate realization of a ``best-possible'' copy-protection scheme for all polynomial-time functionalities.","PeriodicalId":508905,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"38 6","pages":"82"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2401.10200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A major unresolved question in quantum cryptography is whether it is possible to obfuscate arbitrary quantum computation. Indeed, there is much yet to understand about the feasibility of quantum obfuscation even in the classical oracle model, where one is given for free the ability to obfuscate any classical circuit. In this work, we develop a new array of techniques that we use to construct a quantum state obfuscator, a powerful notion formalized recently by Coladangelo and Gunn (arXiv:2311.07794) in their pursuit of better software copy-protection schemes. Quantum state obfuscation refers to the task of compiling a quantum program, consisting of a quantum circuit $C$ with a classical description and an auxiliary quantum state $\ket{\psi}$, into a functionally-equivalent obfuscated quantum program that hides as much as possible about $C$ and $\ket{\psi}$. We prove the security of our obfuscator when applied to any pseudo-deterministic quantum program, i.e. one that computes a (nearly) deterministic classical input / classical output functionality. Our security proof is with respect to an efficient classical oracle, which may be heuristically instantiated using quantum-secure indistinguishability obfuscation for classical circuits. Our result improves upon the recent work of Bartusek, Kitagawa, Nishimaki and Yamakawa (STOC 2023) who also showed how to obfuscate pseudo-deterministic quantum circuits in the classical oracle model, but only ones with a completely classical description. Furthermore, our result answers a question of Coladangelo and Gunn, who provide a construction of quantum state indistinguishability obfuscation with respect to a quantum oracle. Indeed, our quantum state obfuscator together with Coladangelo-Gunn gives the first candidate realization of a ``best-possible'' copy-protection scheme for all polynomial-time functionalities.
来自经典奥秘的量子态混淆
量子密码学中一个尚未解决的重大问题是,是否有可能混淆任意量子计算。事实上,即使是在经典甲骨文模型中,量子混淆的可行性也有很多问题需要了解,因为在经典甲骨文模型中,人们可以免费获得混淆任何经典电路的能力。在这项工作中,我们开发了一系列新技术,用来构建量子态混淆器。量子态混淆器是 Coladangelo 和 Gunn(arXiv:2311.07794)最近为寻求更好的软件复制保护方案而正式提出的一个强大概念。量子态混淆指的是将一个量子程序(由带有经典描述的量子电路$C$和辅助量子态$ket{\psi}$组成)编译成一个功能等价的混淆量子程序,该程序尽可能多地隐藏了$C$和$\ket{\psi}$。我们证明了我们的混淆器在应用于任何伪确定性量子程序(即计算(近乎)确定性经典输入/经典输出功能的程序)时的安全性。我们的安全证明是针对高效经典甲骨文的,它可以使用经典电路的量子安全不可区分性混淆方法启发式地实例化。我们的结果改进了 Bartusek、Kitagawa、Nishimaki 和 Yamakawa 的最新研究成果(STOC 2023),后者也证明了如何在经典甲骨文模型中混淆伪确定性量子电路,但仅限于具有完全经典描述的电路。此外,我们的结果还回答了科拉丹杰洛(Coladangelo)和冈恩(Gunn)的一个问题,他们提供了一种关于量子甲骨文的量子态无差别混淆构造。事实上,我们的量子态混淆器与 Coladangelo-Gunn 一起给出了所有多项式时间功能的 "最可能 "复制保护方案的第一个候选实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信