Indira Prakoso, Alfero Putra Iryanto, Tiara Rahayu, Anzillina Rahma, Muhammad Nur Aziz Ar Rizqi, V. D. Kharisma, Arif Nur Muhammad Ansori, M. Rebezov, P. Burkov, Marina Derkho, Belyakova Natalia, Rybakova Anna, V. Jakhmola, R. Zainul
{"title":"Multi-epitopes Vaccine Design against Klebsiella pneumoniae based on Outer Membrane Protein using Immunoinformatics Approaches","authors":"Indira Prakoso, Alfero Putra Iryanto, Tiara Rahayu, Anzillina Rahma, Muhammad Nur Aziz Ar Rizqi, V. D. Kharisma, Arif Nur Muhammad Ansori, M. Rebezov, P. Burkov, Marina Derkho, Belyakova Natalia, Rybakova Anna, V. Jakhmola, R. Zainul","doi":"10.52711/0974-360x.2024.00003","DOIUrl":null,"url":null,"abstract":"Klebsiella pneumoniae is a gram-negative of bacteria that are known to cause a variety of nosocomial respiratory tract infections including pneumonia. K. pneumoniae is also included in the ESKAPE bacteria group which has high resistance to antibiotics. Therefore, alternative treatment for K. pneumoniae infection is needed, one of which is by developing a vaccine. The aim of this study was to design a vaccine against K. pneumoniae by targeting the outer membrane protein using immunoinformatics approaches. 1,708 protein of K. pneumoniae was then screened using signalP, pred-TMBB2, and Blastp to select outer membrane proteins. The selected protein, PA1_KLEPN and BAMA_KLEP7 were then predicted using T-and B-cell Epitope Prediction on IEDB to obtain epitope regions. Vaccine design of K. pneumoniae consists of 1 BCL epitope, 2 CTL epitopes, 1 HTL epitope, an adjuvant and PADRE sequences constructed with linkers using Benchling. This vaccine construction is predicted to be non-toxic/allergenic and have a strong binding affinity with human TLR-4 with the HADDOCK score of -93.2kcal/mol, RMSD 0.5 and Z-score -2.5. According to the computer-aided studies conducted for this study, the chosen epitopes may provide excellent vaccine candidates to stop K. pneumoniae infections in people. However, in order to further confirm the efficacy of this suggested vaccine candidate, in vitro and in vivo validation is required.","PeriodicalId":21141,"journal":{"name":"Research Journal of Pharmacy and Technology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Journal of Pharmacy and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52711/0974-360x.2024.00003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Klebsiella pneumoniae is a gram-negative of bacteria that are known to cause a variety of nosocomial respiratory tract infections including pneumonia. K. pneumoniae is also included in the ESKAPE bacteria group which has high resistance to antibiotics. Therefore, alternative treatment for K. pneumoniae infection is needed, one of which is by developing a vaccine. The aim of this study was to design a vaccine against K. pneumoniae by targeting the outer membrane protein using immunoinformatics approaches. 1,708 protein of K. pneumoniae was then screened using signalP, pred-TMBB2, and Blastp to select outer membrane proteins. The selected protein, PA1_KLEPN and BAMA_KLEP7 were then predicted using T-and B-cell Epitope Prediction on IEDB to obtain epitope regions. Vaccine design of K. pneumoniae consists of 1 BCL epitope, 2 CTL epitopes, 1 HTL epitope, an adjuvant and PADRE sequences constructed with linkers using Benchling. This vaccine construction is predicted to be non-toxic/allergenic and have a strong binding affinity with human TLR-4 with the HADDOCK score of -93.2kcal/mol, RMSD 0.5 and Z-score -2.5. According to the computer-aided studies conducted for this study, the chosen epitopes may provide excellent vaccine candidates to stop K. pneumoniae infections in people. However, in order to further confirm the efficacy of this suggested vaccine candidate, in vitro and in vivo validation is required.
期刊介绍:
Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal, devoted to pharmaceutical sciences. The aim of RJPT is to increase the impact of pharmaceutical research both in academia and industry, with strong emphasis on quality and originality. RJPT publishes Original Research Articles, Short Communications, Review Articles in all areas of pharmaceutical sciences from the discovery of a drug up to clinical evaluation. Topics covered are: Pharmaceutics and Pharmacokinetics; Pharmaceutical chemistry including medicinal and analytical chemistry; Pharmacognosy including herbal products standardization and Phytochemistry; Pharmacology: Allied sciences including drug regulatory affairs, Pharmaceutical Marketing, Pharmaceutical Microbiology, Pharmaceutical biochemistry, Pharmaceutical Education and Hospital Pharmacy.