A Compact DQN Model for Mobile Agents with Collision Avoidance

Q4 Engineering
M. Kamola
{"title":"A Compact DQN Model for Mobile Agents with Collision Avoidance","authors":"M. Kamola","doi":"10.14313/jamris/2-2023/13","DOIUrl":null,"url":null,"abstract":"This paper presents a complete simulation and reinforcement learning solution to train mobile agents’ strategy of route tracking and avoiding mutual collisions. The aim was to achieve such functionality with limited resources, w.r.t. model input and model size itself. The designed models prove to keep agents safely on the track. Collision avoidance agent’s skills developed in the course of model training are primitive but rational. Small size of the model allows fast training with limited computational resources.","PeriodicalId":37910,"journal":{"name":"Journal of Automation, Mobile Robotics and Intelligent Systems","volume":"18 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation, Mobile Robotics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/jamris/2-2023/13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a complete simulation and reinforcement learning solution to train mobile agents’ strategy of route tracking and avoiding mutual collisions. The aim was to achieve such functionality with limited resources, w.r.t. model input and model size itself. The designed models prove to keep agents safely on the track. Collision avoidance agent’s skills developed in the course of model training are primitive but rational. Small size of the model allows fast training with limited computational resources.
具有避免碰撞功能的移动代理紧凑型 DQN 模型
本文提出了一个完整的模拟和强化学习解决方案,用于训练移动代理的路线跟踪和避免相互碰撞的策略。其目的是利用有限的资源、模型输入和模型本身的大小来实现这种功能。事实证明,所设计的模型能保证代理安全地行驶在轨道上。在模型训练过程中,避撞代理开发的技能是原始而合理的。模型体积小,可以利用有限的计算资源进行快速训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Automation, Mobile Robotics and Intelligent Systems
Journal of Automation, Mobile Robotics and Intelligent Systems Engineering-Control and Systems Engineering
CiteScore
1.10
自引率
0.00%
发文量
25
期刊介绍: Fundamentals of automation and robotics Applied automatics Mobile robots control Distributed systems Navigation Mechatronics systems in robotics Sensors and actuators Data transmission Biomechatronics Mobile computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信