On Pigeonhole Principles and Ramsey in TFNP

Siddhartha Jain, Jiawei Li, Robert Robere, Zhiyang Xun
{"title":"On Pigeonhole Principles and Ramsey in TFNP","authors":"Siddhartha Jain, Jiawei Li, Robert Robere, Zhiyang Xun","doi":"10.48550/arXiv.2401.12604","DOIUrl":null,"url":null,"abstract":"The generalized pigeonhole principle says that if tN + 1 pigeons are put into N holes then there must be a hole containing at least t + 1 pigeons. Let t-PPP denote the class of all total NP-search problems reducible to finding such a t-collision of pigeons. We introduce a new hierarchy of classes defined by the problems t-PPP. In addition to being natural problems in TFNP, we show that classes in and above the hierarchy are related to the notion of multi-collision resistance in cryptography, and contain the problem underlying the breakthrough average-case quantum advantage result shown by Yamakawa&Zhandry (FOCS 2022). Finally, we give lower bound techniques for the black-box versions of t-PPP for any t. In particular, we prove that RAMSEY is not in t-PPP, for any t that is sub-polynomial in log (N), in the black-box setting. Goldberg and Papadimitriou conjectured that RAMSEY reduces to 2-PPP, we thus refute it and more in the black-box setting. We also provide an ensemble of black-box separations which resolve the relative complexity of the t-PPP classes with other well-known TFNP classes.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"27 1","pages":"TR24-017"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2401.12604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The generalized pigeonhole principle says that if tN + 1 pigeons are put into N holes then there must be a hole containing at least t + 1 pigeons. Let t-PPP denote the class of all total NP-search problems reducible to finding such a t-collision of pigeons. We introduce a new hierarchy of classes defined by the problems t-PPP. In addition to being natural problems in TFNP, we show that classes in and above the hierarchy are related to the notion of multi-collision resistance in cryptography, and contain the problem underlying the breakthrough average-case quantum advantage result shown by Yamakawa&Zhandry (FOCS 2022). Finally, we give lower bound techniques for the black-box versions of t-PPP for any t. In particular, we prove that RAMSEY is not in t-PPP, for any t that is sub-polynomial in log (N), in the black-box setting. Goldberg and Papadimitriou conjectured that RAMSEY reduces to 2-PPP, we thus refute it and more in the black-box setting. We also provide an ensemble of black-box separations which resolve the relative complexity of the t-PPP classes with other well-known TFNP classes.
论 TFNP 中的鸽洞原则和拉姆齐
广义鸽洞原理指出,如果把 tN + 1 只鸽子放进 N 个鸽洞,那么一定有一个鸽洞至少包含 t + 1 只鸽子。让 t-PPP 表示所有可还原为找到这种 t 只鸽子碰撞的 NP 搜索问题的类。我们引入了一个由 t-PPP 问题定义的新的类层次结构。除了是 TFNP 中的自然问题之外,我们还证明了层级中和层级之上的类与密码学中的多重碰撞抵抗概念相关,并包含了山川与赞德里(Yamakawa&Zhandry,FOCS 2022)所展示的突破性平均情况量子优势结果的基础问题。最后,我们给出了任意 t 的 t-PPP 黑箱版本的下限技术。特别是,我们证明了在黑箱设置中,对于 log (N) 的亚多项式的任意 t,RAMSEY 不在 t-PPP 中。Goldberg 和 Papadimitriou 曾猜想 RAMSEY 会简化为 2-PPP,因此我们反驳了这一猜想,并且在黑箱环境中反驳了更多猜想。我们还提供了一组黑箱分离,解决了 t-PPP 类与其他著名 TFNP 类的相对复杂性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信