Efficient Prediction of Polymer Glass Transition Temperatures through Machine Learning Methods

Xianghe Meng
{"title":"Efficient Prediction of Polymer Glass Transition Temperatures through Machine Learning Methods","authors":"Xianghe Meng","doi":"10.56028/aetr.9.1.544.2024","DOIUrl":null,"url":null,"abstract":"The glass transition temperature (Tg) plays a crucial role in defining polymer properties. Despite the widespread use of machine learning for material design and property prediction, there are still challenges concerning the interpretability and model performance when predicting Tg. In this study, Simplified Molecular Input Line Entry System strings are utilised to encode the polymer structure, which are then transformed into molecular descriptors for analytical training and prediction of Tg using Artificial Neural Network and Random Forest models. Meticulous hyperparameter tuning of the Random Forest model was performed, resulting in reasonable Tg predictions. This methodology forges a connection between polymer structure and Tg, opening up new avenues for research in the field of polymers.","PeriodicalId":355471,"journal":{"name":"Advances in Engineering Technology Research","volume":"33 11-12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56028/aetr.9.1.544.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The glass transition temperature (Tg) plays a crucial role in defining polymer properties. Despite the widespread use of machine learning for material design and property prediction, there are still challenges concerning the interpretability and model performance when predicting Tg. In this study, Simplified Molecular Input Line Entry System strings are utilised to encode the polymer structure, which are then transformed into molecular descriptors for analytical training and prediction of Tg using Artificial Neural Network and Random Forest models. Meticulous hyperparameter tuning of the Random Forest model was performed, resulting in reasonable Tg predictions. This methodology forges a connection between polymer structure and Tg, opening up new avenues for research in the field of polymers.
通过机器学习方法高效预测聚合物玻璃化温度
玻璃化转变温度(Tg)在确定聚合物性能方面起着至关重要的作用。尽管机器学习被广泛应用于材料设计和性能预测,但在预测 Tg 时,可解释性和模型性能仍面临挑战。本研究利用简化分子输入行输入系统字符串对聚合物结构进行编码,然后将其转化为分子描述符,利用人工神经网络和随机森林模型对 Tg 进行分析训练和预测。对随机森林模型进行了细致的超参数调整,从而得出了合理的 Tg 预测值。这种方法建立了聚合物结构与 Tg 之间的联系,为聚合物领域的研究开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信