CLASSIFICATION A SENSORIMOTOR TASK LEVEL OF COMPLEXITY FOR ATHLETES BASED ON PHYSIOLOGICAL INDICATORS USING MACHINE LEARNING METHODS

Anastasia Kovaleva
{"title":"CLASSIFICATION A SENSORIMOTOR TASK LEVEL OF COMPLEXITY FOR ATHLETES BASED ON PHYSIOLOGICAL INDICATORS USING MACHINE LEARNING METHODS","authors":"Anastasia Kovaleva","doi":"10.62105/2949-6349-2024-1-1-17-20","DOIUrl":null,"url":null,"abstract":"The study aimed to identify the most sensitive autonomic indicators reflecting the level of complexity of the sensorimotor task performed by athletes using various machine learning methods (classification algorithms). As tasks of two levels of difficulty, we used the audio-motor synchronization task: to tap in synchrony with a metronome rhythmic sound (a simple task) and to tap the same rhythm without auditory cues (rhythm memory task, a complex task). Heart rate, respiratory parameters, skin conduction, and EEG were recorded. The most accurate classification was demonstrated by the Classification and Regression Trees (C&RT) model – the error was only 18.29%.","PeriodicalId":517086,"journal":{"name":"Russian Journal of Information Technology in Sports","volume":"9 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Information Technology in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62105/2949-6349-2024-1-1-17-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study aimed to identify the most sensitive autonomic indicators reflecting the level of complexity of the sensorimotor task performed by athletes using various machine learning methods (classification algorithms). As tasks of two levels of difficulty, we used the audio-motor synchronization task: to tap in synchrony with a metronome rhythmic sound (a simple task) and to tap the same rhythm without auditory cues (rhythm memory task, a complex task). Heart rate, respiratory parameters, skin conduction, and EEG were recorded. The most accurate classification was demonstrated by the Classification and Regression Trees (C&RT) model – the error was only 18.29%.
利用机器学习方法,根据生理指标对运动员的传感运动任务复杂程度进行分类
本研究旨在利用各种机器学习方法(分类算法)确定反映运动员所执行的感觉运动任务复杂程度的最敏感自律神经指标。我们使用了音频-运动同步任务作为两种难度的任务:与节拍器的节奏声同步敲击(简单任务)和在没有听觉提示的情况下敲击相同节奏(节奏记忆任务,复杂任务)。对心率、呼吸参数、皮肤传导和脑电图进行了记录。分类和回归树(C&RT)模型的分类准确率最高,误差仅为 18.29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信