Gamma-ray Spectroscopy in Low-Power Nuclear Research Reactors

O. Pakari, Andrew Lucas, F. Darby, V. Lamirand, T. Maurer, Matthew G. Bisbee, L. R. Cao, A. Pautz, S. A. Pozzi
{"title":"Gamma-ray Spectroscopy in Low-Power Nuclear Research Reactors","authors":"O. Pakari, Andrew Lucas, F. Darby, V. Lamirand, T. Maurer, Matthew G. Bisbee, L. R. Cao, A. Pautz, S. A. Pozzi","doi":"10.3390/jne5010003","DOIUrl":null,"url":null,"abstract":"Gamma-ray spectroscopy is an effective technique for radioactive material characterization, routine inventory verification, nuclear safeguards, health physics, and source search scenarios. Gamma-ray spectrometers typically cannot be operated in the immediate vicinity of nuclear reactors due to their high flux fields and their resulting inability to resolve individual pulses. Low-power reactor facilities offer the possibility to study reactor gamma-ray fields, a domain of experiments hitherto poorly explored. In this work, we present gamma-ray spectroscopy experiments performed with various detectors in two reactors: The EPFL zero-power research reactor CROCUS, and the neutron beam facility at the Ohio State University Research Reactor (OSURR). We employed inorganic scintillators (CeBr3), organic scintillators (trans-stilbene and organic glass), and high-purity germanium semiconductors (HPGe) to cover a range of typical—and new—instruments used in gamma-ray spectroscopy. The aim of this study is to provide a guideline for reactor users regarding detector performance, observed responses, and therefore available information in the reactor photon fields up to 2 MeV. The results indicate several future prospects, such as the online (at criticality) monitoring of fission products (like Xe, I, and La), dual-particle sensitive experiments, and code validation opportunities.","PeriodicalId":512967,"journal":{"name":"Journal of Nuclear Engineering","volume":"84 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jne5010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gamma-ray spectroscopy is an effective technique for radioactive material characterization, routine inventory verification, nuclear safeguards, health physics, and source search scenarios. Gamma-ray spectrometers typically cannot be operated in the immediate vicinity of nuclear reactors due to their high flux fields and their resulting inability to resolve individual pulses. Low-power reactor facilities offer the possibility to study reactor gamma-ray fields, a domain of experiments hitherto poorly explored. In this work, we present gamma-ray spectroscopy experiments performed with various detectors in two reactors: The EPFL zero-power research reactor CROCUS, and the neutron beam facility at the Ohio State University Research Reactor (OSURR). We employed inorganic scintillators (CeBr3), organic scintillators (trans-stilbene and organic glass), and high-purity germanium semiconductors (HPGe) to cover a range of typical—and new—instruments used in gamma-ray spectroscopy. The aim of this study is to provide a guideline for reactor users regarding detector performance, observed responses, and therefore available information in the reactor photon fields up to 2 MeV. The results indicate several future prospects, such as the online (at criticality) monitoring of fission products (like Xe, I, and La), dual-particle sensitive experiments, and code validation opportunities.
低功率核研究反应堆中的伽马射线光谱仪
伽马射线光谱仪是一种有效的技术,可用于放射性材料特征描述、常规库存核查、核保障、健康物理学和源搜索等场景。伽马射线光谱仪通常不能在核反应堆附近操作,因为它们的通量场很高,无法分辨单个脉冲。低功率反应堆设施为研究反应堆伽马射线场提供了可能,而这一领域的实验迄今为止还鲜有人涉足。在这项工作中,我们介绍了在两个反应堆中使用各种探测器进行的伽马射线光谱学实验:这两个反应堆是:EPFL 零功率研究反应堆 CROCUS 和俄亥俄州立大学研究反应堆(OSURR)的中子束设施。我们使用了无机闪烁体(CeBr3)、有机闪烁体(反式二苯乙烯和有机玻璃)和高纯锗半导体(HPGe),涵盖了伽马射线光谱学中使用的一系列典型和新型仪器。这项研究的目的是为反应堆用户提供有关探测器性能、观测到的响应以及反应堆光子场中高达 2 MeV 的可用信息的指南。研究结果表明了一些未来前景,如在线(临界状态下)监测裂变产物(如 Xe、I 和 La)、双粒子敏感实验以及代码验证机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信