Utilizing Convolutional Neural Network for Learning Web-Based Braille Letter Classification System

Ahmad Ridwan, Yoan Purbolingga, Hanisah Hanisah
{"title":"Utilizing Convolutional Neural Network for Learning Web-Based Braille Letter Classification System","authors":"Ahmad Ridwan, Yoan Purbolingga, Hanisah Hanisah","doi":"10.47709/cnahpc.v6i1.3386","DOIUrl":null,"url":null,"abstract":"This paper aims to facilitate prospective teachers and people who want to learn braille letters. The system designed is a website that will classify braille letters using the convolutional neural network (CNN) method with the activation functions used, namely ReLU and Softmax. In this research, the input is an image of braille letters with grayscale elements. The output of the data is a regular alphabet letter. Most of this research data consists of training and testing data, which is 2,722 pieces. The accuracy results obtained in the data training process using Max Pooling and epoch 30 for data is 92.15%, epoch 50 is 94.58%, and for training data with epoch 100 is 96.64%. The test results using the system produce an accuracy value of all braille letter image data of 92.30%. Furthermore, for better system development, it is recommended to use hyperparameter tuning to minimize classification uncertainty in braille letter images.","PeriodicalId":15605,"journal":{"name":"Journal Of Computer Networks, Architecture and High Performance Computing","volume":"85 2-3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal Of Computer Networks, Architecture and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47709/cnahpc.v6i1.3386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to facilitate prospective teachers and people who want to learn braille letters. The system designed is a website that will classify braille letters using the convolutional neural network (CNN) method with the activation functions used, namely ReLU and Softmax. In this research, the input is an image of braille letters with grayscale elements. The output of the data is a regular alphabet letter. Most of this research data consists of training and testing data, which is 2,722 pieces. The accuracy results obtained in the data training process using Max Pooling and epoch 30 for data is 92.15%, epoch 50 is 94.58%, and for training data with epoch 100 is 96.64%. The test results using the system produce an accuracy value of all braille letter image data of 92.30%. Furthermore, for better system development, it is recommended to use hyperparameter tuning to minimize classification uncertainty in braille letter images.
利用卷积神经网络学习网络盲文字母分类系统
本文旨在为未来的教师和希望学习盲文字母的人们提供便利。所设计的系统是一个使用卷积神经网络(CNN)方法和激活函数(即 ReLU 和 Softmax)对盲文字母进行分类的网站。在这项研究中,输入是带有灰度元素的盲文字母图像。数据的输出是一个普通的字母表字母。本研究的大部分数据由训练数据和测试数据组成,共计 2 722 个。在数据训练过程中,使用 Max Pooling 和 epoch 30 获得的数据准确率为 92.15%,epoch 50 为 94.58%,epoch 100 的训练数据准确率为 96.64%。使用该系统的测试结果显示,所有盲文字母图像数据的准确率为 92.30%。此外,为了更好地开发系统,建议使用超参数调整来最小化盲文字母图像分类的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信