{"title":"Hadronic Energy Scale Calibration of Calorimeters in Space Using the Moon’s Shadow","authors":"A. Oliva","doi":"10.3390/instruments8010007","DOIUrl":null,"url":null,"abstract":"Calorimetric experiments in space of the current and of the next generation measure cosmic rays directly above TeV on satellites in low Earth orbit. A common issue of these detectors is the determination of the absolute energy scale for hadronic showers above TeV. In this work, we propose the use of the Moon–Earth spectrometer technique for the calibration of calorimeters in space. In brief, the presence of the Moon creates a detectable lack of particles in the detected cosmic ray arrival directions. The position of this depletion has an offset with respect to the Moon center due to the deflection effect of the geomagnetic field on the cosmic rays that depends on the energy and the charge of the particle. The developed simulation will explore if, with enough statistics, angular, and energy resolutions, this effect can be exploited for the energy scale calibration of calorimeters on satellites in orbit in Earth’s proximity.","PeriodicalId":507788,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/instruments8010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Calorimetric experiments in space of the current and of the next generation measure cosmic rays directly above TeV on satellites in low Earth orbit. A common issue of these detectors is the determination of the absolute energy scale for hadronic showers above TeV. In this work, we propose the use of the Moon–Earth spectrometer technique for the calibration of calorimeters in space. In brief, the presence of the Moon creates a detectable lack of particles in the detected cosmic ray arrival directions. The position of this depletion has an offset with respect to the Moon center due to the deflection effect of the geomagnetic field on the cosmic rays that depends on the energy and the charge of the particle. The developed simulation will explore if, with enough statistics, angular, and energy resolutions, this effect can be exploited for the energy scale calibration of calorimeters on satellites in orbit in Earth’s proximity.
目前和下一代的空间量热实验在低地球轨道卫星上直接测量 TeV 以上的宇宙射线。这些探测器的一个共同问题是确定 TeV 以上强子阵列的绝对能量尺度。在这项工作中,我们建议使用月地光谱仪技术来校准空间热量计。简而言之,月球的存在会在探测到的宇宙射线到达方向上造成可探测到的粒子缺失。由于地磁场对宇宙射线的偏转效应取决于粒子的能量和电荷,这种损耗的位置相对于月球中心有一个偏移。所开发的模拟将探索在有足够的统计、角度和能量分辨率的情况下,是否可以利用这种效应来校准地球附近轨道卫星上的热量计的能量标度。