Enhanced dynamic fine-grained popularity-based caching algorithm for ICN-based edge computing networks

IF 0.9 Q4 TELECOMMUNICATIONS
Supratik Banerjee, Sanjay Kumar Biswash
{"title":"Enhanced dynamic fine-grained popularity-based caching algorithm for ICN-based edge computing networks","authors":"Supratik Banerjee,&nbsp;Sanjay Kumar Biswash","doi":"10.1002/itl2.504","DOIUrl":null,"url":null,"abstract":"<p>In this letter, we propose an Enhanced Dynamic Fine-Grained Popularity-based Caching (ED-FGPC) algorithm to efficiently cache static contents in ICN-based edge computing networks. The content popularity changes with time. Thus, the ED-FGPC algorithm considers the number of incoming interests, the practical file size, and the available cache size to adjust the content popularity threshold. This allows dynamic adjustment of the content popularity threshold. Additionally, ED-FGPC incorporates a single bit called cached bit (CB) in the header field of the content. This eliminates caching redundancy in the on-path routers. The cache eviction policy jointly considers the content popularity and the average content access timestamp for content replacement. Based on the content access pattern, this allows finer adjustment of the content eviction policy. We use analytical and mathematical modeling to derive the effectiveness and efficiency of our contribution. Results present a better hit ratio due to dynamic adjustment of the content popularity threshold and the elimination of caching redundancy from the on-path routers.</p>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"7 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we propose an Enhanced Dynamic Fine-Grained Popularity-based Caching (ED-FGPC) algorithm to efficiently cache static contents in ICN-based edge computing networks. The content popularity changes with time. Thus, the ED-FGPC algorithm considers the number of incoming interests, the practical file size, and the available cache size to adjust the content popularity threshold. This allows dynamic adjustment of the content popularity threshold. Additionally, ED-FGPC incorporates a single bit called cached bit (CB) in the header field of the content. This eliminates caching redundancy in the on-path routers. The cache eviction policy jointly considers the content popularity and the average content access timestamp for content replacement. Based on the content access pattern, this allows finer adjustment of the content eviction policy. We use analytical and mathematical modeling to derive the effectiveness and efficiency of our contribution. Results present a better hit ratio due to dynamic adjustment of the content popularity threshold and the elimination of caching redundancy from the on-path routers.

针对基于 ICN 的边缘计算网络的基于流行度的增强型动态细粒度缓存算法
在这封信中,我们提出了一种基于流行度的增强型动态细粒度缓存(ED-FGPC)算法,用于在基于 ICN 的边缘计算网络中高效缓存静态内容。内容的受欢迎程度会随时间发生变化。因此,ED-FGPC 算法会考虑传入兴趣的数量、实际文件大小和可用缓存大小来调整内容流行度阈值。这样就可以动态调整内容流行度阈值。此外,ED-FGPC 在内容的标题字段中加入了一个称为缓存位(CB)的比特。这消除了路径路由器中的缓存冗余。缓存驱逐策略联合考虑了内容流行度和平均内容访问时间戳,以进行内容替换。根据内容访问模式,可以对内容驱逐策略进行更精细的调整。我们使用分析和数学模型来推导我们所做贡献的有效性和效率。结果表明,由于动态调整了内容流行度阈值,并消除了路径上路由器的缓存冗余,从而提高了命中率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信