Some Bounds for the Regularity of the Edge Ideals and Their Powers in a Certain Class of Graphs

Pub Date : 2024-01-29 DOI:10.1556/012.2023.04298
T. Ashitha, Thangaraj Asir, Do Trong Hoang, M. R. Pournaki
{"title":"Some Bounds for the Regularity of the Edge Ideals and Their Powers in a Certain Class of Graphs","authors":"T. Ashitha, Thangaraj Asir, Do Trong Hoang, M. R. Pournaki","doi":"10.1556/012.2023.04298","DOIUrl":null,"url":null,"abstract":"Let 𝑛 ≥ 2 be an integer. The graph is obtained by letting all the elements of {0, … , 𝑛 − 1} to be the vertices and defining distinct vertices 𝑥 and 𝑦 to be adjacent if and only if gcd(𝑥 + 𝑦, 𝑛) ≠ 1. In this paper, we give some bounds for the Castelnuovo–Mumford regularity of the edge ideals and their powers for .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2023.04298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let 𝑛 ≥ 2 be an integer. The graph is obtained by letting all the elements of {0, … , 𝑛 − 1} to be the vertices and defining distinct vertices 𝑥 and 𝑦 to be adjacent if and only if gcd(𝑥 + 𝑦, 𝑛) ≠ 1. In this paper, we give some bounds for the Castelnuovo–Mumford regularity of the edge ideals and their powers for .
分享
查看原文
某类图中边理想及其幂的规则性的一些界限
设𝑛 ≥ 2 为整数。将 {0, ... , 𝑛 - 1} 中的所有元素设为顶点,并定义不同的顶点 𝑥 和 𝑦 为相邻顶点,当且仅当 gcd(𝑥 + 𝑦, 𝑛) ≠ 1 时。本文给出了 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信