An Engineering Boundary Eigenvalue Problem Studied by Functional-Analytic Methods

L. Kohaupt
{"title":"An Engineering Boundary Eigenvalue Problem Studied by Functional-Analytic Methods","authors":"L. Kohaupt","doi":"10.24297/jam.v23i.9574","DOIUrl":null,"url":null,"abstract":"In this paper, we take up a boundary value problem (BVP) from the area of engineering that is described in a book by L. Collatz. Whereas there, the BVP is cast into a boundary eigenvalue problem (BEVP) having complex eigenvalues, here the original BVP is transformed into a BEVP that has positive simple eigenvalues and real eigenfunctions. Further, unlike there, we derive the inverse T = G of the differential operator L associated with the BEVP, show that T = G is compact in an appropriate real Hilbert space H, expand T u = Gu and u for all u ∈ H in a respective series of eigenvectors, and obtain max-, min-, min-max, and max-min-Rayleigh-quotient representation formulas of the eigenvalues. Specific examples for generalized Rayleigh quotients illustrate the theoretical findings. The style of the paper is expository in order to address a large readership.","PeriodicalId":502930,"journal":{"name":"JOURNAL OF ADVANCES IN MATHEMATICS","volume":"45 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF ADVANCES IN MATHEMATICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24297/jam.v23i.9574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we take up a boundary value problem (BVP) from the area of engineering that is described in a book by L. Collatz. Whereas there, the BVP is cast into a boundary eigenvalue problem (BEVP) having complex eigenvalues, here the original BVP is transformed into a BEVP that has positive simple eigenvalues and real eigenfunctions. Further, unlike there, we derive the inverse T = G of the differential operator L associated with the BEVP, show that T = G is compact in an appropriate real Hilbert space H, expand T u = Gu and u for all u ∈ H in a respective series of eigenvectors, and obtain max-, min-, min-max, and max-min-Rayleigh-quotient representation formulas of the eigenvalues. Specific examples for generalized Rayleigh quotients illustrate the theoretical findings. The style of the paper is expository in order to address a large readership.
用函数解析法研究工程边界特征值问题
在本文中,我们将讨论一个工程领域的边界值问题(BVP),该问题在科拉茨(L. Collatz)的一本书中有所描述。在该书中,边界值问题被转化为具有复特征值的边界特征值问题(BEVP),而在本文中,原始边界值问题被转化为具有正简单特征值和实特征函数的边界特征值问题。此外,与那里不同的是,我们推导出了与 BEVP 相关的微分算子 L 的逆 T = G,证明了 T = G 在适当的实 Hilbert 空间 H 中是紧凑的,将所有 u∈H 中的 T u = Gu 和 u 分别展开为一系列特征向量,并得到了特征值的最大、最小、最小-最大和最大-最小-雷利向量表示公式。广义瑞利商的具体例子说明了理论发现。为了面向广大读者,论文采用了说明文的风格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信