{"title":"De novo Drug Design to Suppress Coronavirus RNA-Glycoprotein via PNA-Calcitonin","authors":"Soykan Agar, B. Akkurt, Levent Alparslan","doi":"10.18596/jotcsa.1406290","DOIUrl":null,"url":null,"abstract":"De novo drug design has been studied utilizing the organic chemical structures of Salmon Calcitonin 9 - 19 and Peptide Nucleic Acid (PNA) to suppress Coronavirus Ribonucleic Acid (RNA)-Glycoprotein complex. PNA has a polyamide backbone and Thymine pendant groups to selectively bind and inhibit Adenine domains of the RNA-Glycoprotein complex. While doing so, molecular docking and molecular dynamics studies revealed that there is great inhibition docking energy (-12.1 kcal/mol) with significantly good inhibition constant (124.1 µM) values confirming the efficient nucleotide-specific silencing of Coronavirus RNA-Glycoprotein complex.","PeriodicalId":17299,"journal":{"name":"Journal of the Turkish Chemical Society Section A: Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Turkish Chemical Society Section A: Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18596/jotcsa.1406290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
De novo drug design has been studied utilizing the organic chemical structures of Salmon Calcitonin 9 - 19 and Peptide Nucleic Acid (PNA) to suppress Coronavirus Ribonucleic Acid (RNA)-Glycoprotein complex. PNA has a polyamide backbone and Thymine pendant groups to selectively bind and inhibit Adenine domains of the RNA-Glycoprotein complex. While doing so, molecular docking and molecular dynamics studies revealed that there is great inhibition docking energy (-12.1 kcal/mol) with significantly good inhibition constant (124.1 µM) values confirming the efficient nucleotide-specific silencing of Coronavirus RNA-Glycoprotein complex.