Bayesian Estimation of the Odd Lindley Exponentiated Exponential Distribution : Applications in-Reliability

Nour El houda Djemoui, A. Chadli, Ilhem Merah
{"title":"Bayesian Estimation of the Odd Lindley Exponentiated Exponential Distribution : Applications in-Reliability","authors":"Nour El houda Djemoui, A. Chadli, Ilhem Merah","doi":"10.19139/soic-2310-5070-1880","DOIUrl":null,"url":null,"abstract":"         In this work, we investigate the estimation of the unknown parameters and the reliability characteristics ofthe Odd Lindley Exponentiated Exponential distribution. The Bayes estimators and corresponding risks are derived usingvarious loss functions with complete data and a gamma prior distribution. A simulation study was carried out to calculate allthe results. We used Pitman’s closeness criterion and the integrated mean squared error to compare the performance of theBayesian and maximum likelihood estimators. Finally, we illustrate our techniques by analysing a real-life data set.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"58 28","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

         In this work, we investigate the estimation of the unknown parameters and the reliability characteristics ofthe Odd Lindley Exponentiated Exponential distribution. The Bayes estimators and corresponding risks are derived usingvarious loss functions with complete data and a gamma prior distribution. A simulation study was carried out to calculate allthe results. We used Pitman’s closeness criterion and the integrated mean squared error to compare the performance of theBayesian and maximum likelihood estimators. Finally, we illustrate our techniques by analysing a real-life data set.
奇数林德利指数分布的贝叶斯估计:在可靠性方面的应用
在这项工作中,我们研究了奇数林德利指数分布的未知参数估计和可靠性特征。在完整数据和伽马先验分布的条件下,使用各种损失函数推导出贝叶斯估计值和相应的风险。为了计算所有结果,我们进行了模拟研究。我们使用 Pitman 的接近标准和综合均方误差来比较贝叶斯估计器和最大似然估计器的性能。最后,我们通过分析现实生活中的数据集来说明我们的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信