Junsu Kim, Yeon-Hee Kim, Hyejeong Bok, Sungbin Jang, Eunju Cho, Seung-Bum Kim
{"title":"Development of an Optimal Post-Processing Model Using the Micro Genetic Algorithm to Improve Precipitation Forecasting in Korea","authors":"Junsu Kim, Yeon-Hee Kim, Hyejeong Bok, Sungbin Jang, Eunju Cho, Seung-Bum Kim","doi":"10.1175/aies-d-23-0069.1","DOIUrl":null,"url":null,"abstract":"\nWe developed an advanced post-processing model for precipitation forecasting using a micro-genetic algorithm (MGA). The algorithm determines the optimal combination of three general circulation models: the Korean Integrated Model, the Unified Model, and the Integrated Forecast System model. To measure model accuracy, including the critical success index (CSI), probability of detection (POD), and frequency bias index, the MGA calculates optimal weights for individual models based on a fitness function that considers various indices. Our optimized multi-model yielded up to 13% and 10% improvement in CSI and POD performance compared to each individual model, respectively. Notably, when applied to an operational definition that considers precipitation thresholds from three models and averages the precipitation amount from the satisfactory models, our optimized multi-model outperformed the current operational model used by the Korea Meteorological Administration by up to 1.0% and 6.8% in terms of CSI and false alarm ratio performance, respectively. This study highlights the effectiveness of a weighted combination of global models to enhance the forecasting accuracy for regional precipitation. By utilizing the MGA for the fine-tuning of model weights, we achieved superior precipitation prediction compared to that of individual models and existing standard post-processing operations. This approach can significantly improve the accuracy of precipitation forecasts.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"76 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1175/aies-d-23-0069.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We developed an advanced post-processing model for precipitation forecasting using a micro-genetic algorithm (MGA). The algorithm determines the optimal combination of three general circulation models: the Korean Integrated Model, the Unified Model, and the Integrated Forecast System model. To measure model accuracy, including the critical success index (CSI), probability of detection (POD), and frequency bias index, the MGA calculates optimal weights for individual models based on a fitness function that considers various indices. Our optimized multi-model yielded up to 13% and 10% improvement in CSI and POD performance compared to each individual model, respectively. Notably, when applied to an operational definition that considers precipitation thresholds from three models and averages the precipitation amount from the satisfactory models, our optimized multi-model outperformed the current operational model used by the Korea Meteorological Administration by up to 1.0% and 6.8% in terms of CSI and false alarm ratio performance, respectively. This study highlights the effectiveness of a weighted combination of global models to enhance the forecasting accuracy for regional precipitation. By utilizing the MGA for the fine-tuning of model weights, we achieved superior precipitation prediction compared to that of individual models and existing standard post-processing operations. This approach can significantly improve the accuracy of precipitation forecasts.