Parameter Estimation for Geometric Lévy Processes with Constant Volatility

Q1 Decision Sciences
Sher Chhetri, Hongwei Long, Cory Ball
{"title":"Parameter Estimation for Geometric Lévy Processes with Constant Volatility","authors":"Sher Chhetri,&nbsp;Hongwei Long,&nbsp;Cory Ball","doi":"10.1007/s40745-024-00513-8","DOIUrl":null,"url":null,"abstract":"<div><p>In finance, various stochastic models have been used to describe price movements of financial instruments. Following the seminal work of Robert Merton, several jump-diffusion models have been proposed for option pricing and risk management. In this study, we augment the process related to the dynamics of log returns in the Black–Scholes model by incorporating alpha-stable Lévy motion with constant volatility. We employ the sample characteristic function approach to investigate parameter estimation for discretely observed stochastic differential equations driven by Lévy noises. Furthermore, we discuss the consistency and asymptotic properties of the proposed estimators and establish a Central Limit Theorem. To further demonstrate the validity of the estimators, we present simulation results for the model. The utility of the proposed model is demonstrated using the Dow Jones Industrial Average data, and all parameters involved in the model are estimated. In addition, we delved into the broader implications of our work, discussing the relevance of our methods to big data-driven research, particularly in the fields of financial data modeling and climate models. We also highlight the importance of optimization and data mining in these contexts, referencing key works in the field. This study thus contributes to the specific area of finance and beyond to the wider scientific community engaged in data science research and analysis.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"12 1","pages":"63 - 93"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00513-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

In finance, various stochastic models have been used to describe price movements of financial instruments. Following the seminal work of Robert Merton, several jump-diffusion models have been proposed for option pricing and risk management. In this study, we augment the process related to the dynamics of log returns in the Black–Scholes model by incorporating alpha-stable Lévy motion with constant volatility. We employ the sample characteristic function approach to investigate parameter estimation for discretely observed stochastic differential equations driven by Lévy noises. Furthermore, we discuss the consistency and asymptotic properties of the proposed estimators and establish a Central Limit Theorem. To further demonstrate the validity of the estimators, we present simulation results for the model. The utility of the proposed model is demonstrated using the Dow Jones Industrial Average data, and all parameters involved in the model are estimated. In addition, we delved into the broader implications of our work, discussing the relevance of our methods to big data-driven research, particularly in the fields of financial data modeling and climate models. We also highlight the importance of optimization and data mining in these contexts, referencing key works in the field. This study thus contributes to the specific area of finance and beyond to the wider scientific community engaged in data science research and analysis.

具有恒定波动性的几何莱维过程的参数估计
在金融领域,各种随机模型被用来描述金融工具的价格变动。继Robert Merton的开创性工作之后,一些跳跃-扩散模型被提出用于期权定价和风险管理。在本研究中,我们通过纳入具有恒定波动率的α稳定lsamvy运动来增加与Black-Scholes模型中对数回报动力学相关的过程。本文采用样本特征函数方法研究了由lsamvy噪声驱动的离散观测随机微分方程的参数估计问题。进一步讨论了所提估计量的相合性和渐近性,并建立了中心极限定理。为了进一步证明估计器的有效性,我们给出了模型的仿真结果。利用道琼斯工业平均指数数据证明了所提出模型的效用,并对模型中涉及的所有参数进行了估计。此外,我们还深入探讨了我们工作的更广泛意义,讨论了我们的方法与大数据驱动研究的相关性,特别是在金融数据建模和气候模型领域。我们还强调了优化和数据挖掘在这些背景下的重要性,参考了该领域的关键工作。因此,这项研究对金融的特定领域以及从事数据科学研究和分析的更广泛的科学界做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Data Science
Annals of Data Science Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
6.50
自引率
0.00%
发文量
93
期刊介绍: Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed.     ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信