{"title":"Context-aware relation enhancement and similarity reasoning for image-text retrieval","authors":"Zheng Cui, Yongli Hu, Yanfeng Sun, Baocai Yin","doi":"10.1049/cvi2.12270","DOIUrl":null,"url":null,"abstract":"<p>Image-text retrieval is a fundamental yet challenging task, which aims to bridge a semantic gap between heterogeneous data to achieve precise measurements of semantic similarity. The technique of fine-grained alignment between cross-modal features plays a key role in various successful methods that have been proposed. Nevertheless, existing methods cannot effectively utilise intra-modal information to enhance feature representation and lack powerful similarity reasoning to get a precise similarity score. Intending to tackle these issues, a context-aware Relation Enhancement and Similarity Reasoning model, called RESR, is proposed, which conducts both intra-modal relation enhancement and inter-modal similarity reasoning while considering the global-context information. For intra-modal relation enhancement, a novel context-aware graph convolutional network is introduced to enhance local feature representations by utilising relation and global-context information. For inter-modal similarity reasoning, local and global similarity features are exploited by the bidirectional alignment of image and text, and the similarity reasoning is implemented among multi-granularity similarity features. Finally, refined local and global similarity features are adaptively fused to get a precise similarity score. The experimental results show that our effective model outperforms some state-of-the-art approaches, achieving average improvements of 2.5% and 6.3% in R@sum on the Flickr30K and MS-COCO dataset.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 5","pages":"652-665"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12270","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12270","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Image-text retrieval is a fundamental yet challenging task, which aims to bridge a semantic gap between heterogeneous data to achieve precise measurements of semantic similarity. The technique of fine-grained alignment between cross-modal features plays a key role in various successful methods that have been proposed. Nevertheless, existing methods cannot effectively utilise intra-modal information to enhance feature representation and lack powerful similarity reasoning to get a precise similarity score. Intending to tackle these issues, a context-aware Relation Enhancement and Similarity Reasoning model, called RESR, is proposed, which conducts both intra-modal relation enhancement and inter-modal similarity reasoning while considering the global-context information. For intra-modal relation enhancement, a novel context-aware graph convolutional network is introduced to enhance local feature representations by utilising relation and global-context information. For inter-modal similarity reasoning, local and global similarity features are exploited by the bidirectional alignment of image and text, and the similarity reasoning is implemented among multi-granularity similarity features. Finally, refined local and global similarity features are adaptively fused to get a precise similarity score. The experimental results show that our effective model outperforms some state-of-the-art approaches, achieving average improvements of 2.5% and 6.3% in R@sum on the Flickr30K and MS-COCO dataset.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf