Topology Optimization of a Robot Gripper with nTopology

Q4 Engineering
Beatriz Monteiro, Francisca Rocha, Jose M. Costa
{"title":"Topology Optimization of a Robot Gripper with nTopology","authors":"Beatriz Monteiro, Francisca Rocha, Jose M. Costa","doi":"10.24840/2183-6493_010-001_002051","DOIUrl":null,"url":null,"abstract":"The robot gripper works analogously to the human hand, being the end effector of a robotic mechanism and acting as a bridge between the robot and the environment. A topology optimized gripper can be fully functional while allowing weight reduction. In this paper, the topology optimization of a 316L-SS four-clamp gripper capable of withstanding a 2 N load was conducted using the nTopology software. Fusion360 static stress analysis showed a reduction of 43% in weight, keeping the safety factor above 3, and leading to a displacement of 0,0067 mm. Finally, the maximum induced stress was shown not to cause permanent deformation of the clamp since it was observed to be inferior to the yield strength of 316L-SS.","PeriodicalId":36339,"journal":{"name":"U.Porto Journal of Engineering","volume":"656 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"U.Porto Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24840/2183-6493_010-001_002051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The robot gripper works analogously to the human hand, being the end effector of a robotic mechanism and acting as a bridge between the robot and the environment. A topology optimized gripper can be fully functional while allowing weight reduction. In this paper, the topology optimization of a 316L-SS four-clamp gripper capable of withstanding a 2 N load was conducted using the nTopology software. Fusion360 static stress analysis showed a reduction of 43% in weight, keeping the safety factor above 3, and leading to a displacement of 0,0067 mm. Finally, the maximum induced stress was shown not to cause permanent deformation of the clamp since it was observed to be inferior to the yield strength of 316L-SS.
利用 nTopology 对机器人抓手进行拓扑优化
机器人抓手的作用类似于人类的手,是机器人机构的末端执行器,是机器人与环境之间的桥梁。经过拓扑优化的机械手既能充分发挥功能,又能减轻重量。本文使用 nTopology 软件对能够承受 2 N 负载的 316L-SS 四夹钳抓手进行了拓扑优化。Fusion360 静态应力分析表明,重量减轻了 43%,安全系数保持在 3 以上,位移为 0.0067 毫米。最后,由于最大诱导应力低于 316L-SS 的屈服强度,因此不会导致夹具永久变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
U.Porto Journal of Engineering
U.Porto Journal of Engineering Engineering-Engineering (all)
CiteScore
0.70
自引率
0.00%
发文量
58
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信