{"title":"Dirichlet problems with anisotropic principal part involving unbounded coefficients","authors":"D. Motreanu, E. Tornatore","doi":"10.58997/ejde.2024.11","DOIUrl":null,"url":null,"abstract":"This article establishes the existence of solutions in a weak sense for a quasilinear Dirichlet problem exhibiting anisotropic differential operator with unbounded coefficients in the principal part and full dependence on the gradient in the lower order terms. A major part of this work focuses on the existence of a uniform bound for the solution set in the anisotropic setting. The unbounded coefficients are handled through an appropriate truncation and a priori estimates.\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/11/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This article establishes the existence of solutions in a weak sense for a quasilinear Dirichlet problem exhibiting anisotropic differential operator with unbounded coefficients in the principal part and full dependence on the gradient in the lower order terms. A major part of this work focuses on the existence of a uniform bound for the solution set in the anisotropic setting. The unbounded coefficients are handled through an appropriate truncation and a priori estimates.
For more information see https://ejde.math.txstate.edu/Volumes/2024/11/abstr.html