Resurgence in the Transition Region: The Incomplete Gamma Function

GergHo Nemes
{"title":"Resurgence in the Transition Region: The Incomplete Gamma Function","authors":"GergHo Nemes","doi":"10.3842/SIGMA.2024.026","DOIUrl":null,"url":null,"abstract":"We study the resurgence properties of the coefficients $C_n(\\tau)$ appearing in the asymptotic expansion of the incomplete gamma function within the transition region. Our findings reveal that the asymptotic behaviour of $C_n(\\tau)$ as $n\\to +\\infty$ depends on the parity of $n$. Both $C_{2n-1}(\\tau)$ and $C_{2n}(\\tau)$ exhibit behaviours characterised by a leading term accompanied by an inverse factorial series, where the coefficients are once again $C_{2k-1}(\\tau)$ and $C_{2k}(\\tau)$, respectively. Our derivation employs elementary tools and relies on the known resurgence properties of the asymptotic expansion of the gamma function and the uniform asymptotic expansion of the incomplete gamma function. To the best of our knowledge, prior to this paper, there has been no investigation in the existing literature regarding the resurgence properties of asymptotic expansions in transition regions.","PeriodicalId":515898,"journal":{"name":"Symmetry, Integrability and Geometry: Methods and Applications","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry, Integrability and Geometry: Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/SIGMA.2024.026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the resurgence properties of the coefficients $C_n(\tau)$ appearing in the asymptotic expansion of the incomplete gamma function within the transition region. Our findings reveal that the asymptotic behaviour of $C_n(\tau)$ as $n\to +\infty$ depends on the parity of $n$. Both $C_{2n-1}(\tau)$ and $C_{2n}(\tau)$ exhibit behaviours characterised by a leading term accompanied by an inverse factorial series, where the coefficients are once again $C_{2k-1}(\tau)$ and $C_{2k}(\tau)$, respectively. Our derivation employs elementary tools and relies on the known resurgence properties of the asymptotic expansion of the gamma function and the uniform asymptotic expansion of the incomplete gamma function. To the best of our knowledge, prior to this paper, there has been no investigation in the existing literature regarding the resurgence properties of asymptotic expansions in transition regions.
过渡区的复苏:不完全伽马函数
我们研究了不完全伽马函数在过渡区域内的渐近展开中出现的系数$C_n(\tau)$的回升特性。我们的研究结果表明,当 $n\to +\infty$ 时,$C_n(\tau)$ 的渐近行为取决于 $n$ 的奇偶性。$C_{2n-1}(\tau)$和$C_{2n}(\tau)$都表现出前导项伴随逆阶乘的行为特征,其中系数分别为$C_{2k-1}(\tau)$和$C_{2k}(\tau)$。我们的推导使用了基本工具,并依赖于伽马函数渐近展开和不完全伽马函数均匀渐近展开的已知回升特性。据我们所知,在本文之前,现有文献中还没有关于过渡区域渐近展开的回升特性的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信