Fault Detection in Wireless Sensor Network Based on Deep Learning Algorithms

Pragati Mahale, Sejal Khopade
{"title":"Fault Detection in Wireless Sensor Network Based on Deep Learning Algorithms","authors":"Pragati Mahale, Sejal Khopade","doi":"10.59890/ijaamr.v2i1.664","DOIUrl":null,"url":null,"abstract":"This study discusses fully distributed fault detection via a wireless sensor network. Initially, we suggested using the Convex hull approach to determine a range of extreme points including nearby nodes. As the number of nodes rises, the message's duration is constrained. Secondly, in order to enhance convergence performance and identify node errors, we suggested using a convolution neural network (CNN) and a Naïve Bayes classifier. Lastly, we use real-world datasets to examine CNN, convex hull, and Naïve bayes algorithms to find and classify the defects. Based on performance measures, the results of simulations and experiments demonstrate that the CNN algorithm has better-identified defects than the convex hull technique while maintaining feasibility and economy.","PeriodicalId":508751,"journal":{"name":"International Journal of Applied and Advanced Multidisciplinary Research","volume":"98 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied and Advanced Multidisciplinary Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59890/ijaamr.v2i1.664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study discusses fully distributed fault detection via a wireless sensor network. Initially, we suggested using the Convex hull approach to determine a range of extreme points including nearby nodes. As the number of nodes rises, the message's duration is constrained. Secondly, in order to enhance convergence performance and identify node errors, we suggested using a convolution neural network (CNN) and a Naïve Bayes classifier. Lastly, we use real-world datasets to examine CNN, convex hull, and Naïve bayes algorithms to find and classify the defects. Based on performance measures, the results of simulations and experiments demonstrate that the CNN algorithm has better-identified defects than the convex hull technique while maintaining feasibility and economy.
基于深度学习算法的无线传感器网络故障检测
本研究讨论了通过无线传感器网络进行全分布式故障检测的问题。最初,我们建议使用凸壳方法来确定极端点的范围,包括附近的节点。随着节点数量的增加,信息的持续时间也会受到限制。其次,为了提高收敛性能和识别节点错误,我们建议使用卷积神经网络(CNN)和奈夫贝叶斯分类器。最后,我们使用真实世界的数据集来检验 CNN、凸壳和奈夫贝叶斯算法对缺陷的查找和分类。基于性能指标,模拟和实验结果表明,与凸壳技术相比,CNN 算法能更好地识别缺陷,同时保持可行性和经济性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信