Topological Relation Aware Transformer

Nathan Manzambi Ndongala
{"title":"Topological Relation Aware Transformer","authors":"Nathan Manzambi Ndongala","doi":"10.21522/tijar.2014.11.01.art015","DOIUrl":null,"url":null,"abstract":"We present a Topological Relation Aware Transformer (T-RAT), a specialized head transformer to open sets, an element of the topology τ generated by the set S, the set of all pre-existing relations between input tokens of the model. From this topological space (S, τ), we present the way to spread each open set to one head of our Transformer. T-RAT improves exact match accuracy in Text-To-SQL challenge (62.09%) without any enhancement of large language models compared to the baseline models RAT-SQL (57.2%) and Light RAT-SQL (60.25%). Keywords: Deep learning, Natural Language Processing, Neural Semantic Parsing, Relation Aware Transformer, RAT-SQL, Text-To-SQL Transformer.","PeriodicalId":22213,"journal":{"name":"TEXILA INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH","volume":"711 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEXILA INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21522/tijar.2014.11.01.art015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a Topological Relation Aware Transformer (T-RAT), a specialized head transformer to open sets, an element of the topology τ generated by the set S, the set of all pre-existing relations between input tokens of the model. From this topological space (S, τ), we present the way to spread each open set to one head of our Transformer. T-RAT improves exact match accuracy in Text-To-SQL challenge (62.09%) without any enhancement of large language models compared to the baseline models RAT-SQL (57.2%) and Light RAT-SQL (60.25%). Keywords: Deep learning, Natural Language Processing, Neural Semantic Parsing, Relation Aware Transformer, RAT-SQL, Text-To-SQL Transformer.
拓扑关系感知变压器
我们提出了拓扑关系感知变换器(T-RAT),这是一个专门用于开放集的头部变换器,开放集是由集合 S 生成的拓扑结构 τ 中的一个元素,集合 S 是模型输入标记之间所有已有关系的集合。从这个拓扑空间(S,τ)中,我们提出了将每个开放集扩散到转换器的一个头部的方法。与基线模型 RAT-SQL (57.2%) 和 Light RAT-SQL (60.25%) 相比,T-RAT 提高了 Text-To-SQL 挑战赛中的精确匹配准确率(62.09%),而无需增强大型语言模型。关键词深度学习、自然语言处理、神经语义解析、关系感知转换器、RAT-SQL、Text-To-SQL 转换器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信