{"title":"STUDY OF THE POSSIBILITY OF USING VARIOUS CARBONATE ROCKS IN THE SYNTHESIS OF CALCIUM-ALUMINOFERRITE CLINKER","authors":"I. Borisov, A. Novosyolov, M. Nikitina","doi":"10.34031/2071-7318-2024-9-3-76-89","DOIUrl":null,"url":null,"abstract":"The article considers the possibility of using carbonate rocks of limestone, marl and chalk in the synthesis of calcium-aluminoferrite clinker (CAFC). The analysis of the structure of carbonate rocks, as well as their influence on the physico-chemical processes occurring during the synthesis of calcium-aluminoferrite clinker, is given. Phase formation has been studied in the temperature ranges 900-1000 °C and 1100-1200 °C with an isothermal exposure of 20 minutes. The heat treatment mode has been selected to obtain the basic phase composition of calcium-aluminoferrite clinker. The dynamics of changes in the qualitative phase composition of firing products at various temperatures, ranging from 900 °C to the clinker sintering temperature of 1200 ° C, as well as quantitative characteristics of the intensity of formation of the main clinker phases are presented. It was found that during the firing of CAFC in the temperature range of 900-1000 °C, raw materials mixtures gradually undergo a number of physico–chemical transformations, the main of which are thermal dissociation of CaCO3, the formation of intermediate phases (CS, CF, Al2O3•4SiO2, Al2O3•SiO2), as a result of decomposition of accompanying minerals and solid-phase interactions, as well as the beginning of the formation of clinker compounds CA, C2AS and C2F. It is proposed to use for the limestone-bauxite composition a temperature of 1150 °C with an exposure of 40-60 minutes, marl-bauxite - 1100 °C with an exposure of 30-40 minutes and chalk-bauxite- 1100 °C with an exposure of 30-40 minutes.","PeriodicalId":9367,"journal":{"name":"Bulletin of Belgorod State Technological University named after. V. G. Shukhov","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Belgorod State Technological University named after. V. G. Shukhov","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34031/2071-7318-2024-9-3-76-89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The article considers the possibility of using carbonate rocks of limestone, marl and chalk in the synthesis of calcium-aluminoferrite clinker (CAFC). The analysis of the structure of carbonate rocks, as well as their influence on the physico-chemical processes occurring during the synthesis of calcium-aluminoferrite clinker, is given. Phase formation has been studied in the temperature ranges 900-1000 °C and 1100-1200 °C with an isothermal exposure of 20 minutes. The heat treatment mode has been selected to obtain the basic phase composition of calcium-aluminoferrite clinker. The dynamics of changes in the qualitative phase composition of firing products at various temperatures, ranging from 900 °C to the clinker sintering temperature of 1200 ° C, as well as quantitative characteristics of the intensity of formation of the main clinker phases are presented. It was found that during the firing of CAFC in the temperature range of 900-1000 °C, raw materials mixtures gradually undergo a number of physico–chemical transformations, the main of which are thermal dissociation of CaCO3, the formation of intermediate phases (CS, CF, Al2O3•4SiO2, Al2O3•SiO2), as a result of decomposition of accompanying minerals and solid-phase interactions, as well as the beginning of the formation of clinker compounds CA, C2AS and C2F. It is proposed to use for the limestone-bauxite composition a temperature of 1150 °C with an exposure of 40-60 minutes, marl-bauxite - 1100 °C with an exposure of 30-40 minutes and chalk-bauxite- 1100 °C with an exposure of 30-40 minutes.